

Learning-based Approaches to Estimate Job Wait Time in HTC Datacenters

Luc Gombert and Frédéric Suter

IN2P3 Computing Center / CNRS Villeurbanne, France

HEPiX Fall Workshop October 13, 2020

Previously in HEPiX series ...

- ► A first study of the workload processed at CC-IN2P3
- ► Focus on fairness for Local users
- ► Simulation of queue reconfiguration

Acknowledgment

▶ Original motivation for this work came from a talk by Wataru Takase (KEK) at the FJPPL — Japan-France workshop on computing technologies

Motivations and Objectives

- ► Fair-share scheduling ⇒ no estimation of job start time returned to the user!
- Distribution of Local job wait time
 - Over 23 weeks from June 25, 2018 to December 2, 2018
 - > 5,748,922 jobs on 35,000 cores

Motivations and Objectives

- ► Fair-share scheduling ⇒ no estimation of job start time returned to the user!
- Distribution of Local job wait time
 - Over 23 weeks from June 25, 2018 to December 2, 2018
 - > 5,748,922 jobs on 35,000 cores

- 1. Can we explain why a job waits more than another?
- 2. Can we train some Machine Learning algorithms?
- 3. Can we get a good estimation of job wait time in the orange and red zones?

Outline

- Introduction
- Some Intuitive Causes of Job Wait Time Who Submits the Job?
 What is the Job Requesting?
 When and Where is the Job Submitted?
- Learning-Based Job Wait Time Estimators
 Objectives and Performance Metrics
 ML Algorithm Selection
- Experimental Evaluation
- Conclusion and Future Work

Who Submits the Job?

Job Features

- Owner: more than 2,500 individual accounts at CC-IN2P3
- ► Group: About 80 scientific collaborations

Resource Allocation Principle

- 1. Groups express pledges every year (as a computing power in HS06)
- 2. The sum of all pledges defines what CC-IN2P3 has to deliver
- 3. Each group gets a proportional share of this
 - Defines an consumption objective
 - Used by the job scheduler as a basis of its Fair-Share policy

Who Submits the Job?

Job Features

- Owner: more than 2,500 individual accounts at CC-IN2P3
- ► Group: About 80 scientific collaborations

Resource Allocation Principle

- 1. Groups express pledges every year (as a computing power in HS06)
- 2. The sum of all pledges defines what CC-IN2P3 has to deliver
- 3. Each group gets a proportional share of this
 - Defines an consumption objective
 - Used by the job scheduler as a basis of its Fair-Share policy

Intuitive Causes

- 1. Small groups get less resources → wait more!
- 2. Overconsumption of share \sim lower priority \sim wait more!
- 3. Job owners can be manually blocked by operators ∼ wait more!

What is the Job Requesting?

Job Features

- ► Time: either Walltime or CPU time
 - hard or soft limits default values if none provided
- Memory: either resident or virtual
 - hard or soft limits default values if none provided
- Slots: almost always one for Local jobs
- Access to special resources: submitted to quotas

What is the Job Requesting?

Job Features

- ► Time: either Walltime or CPU time
 - hard or soft limits default values if none provided
- Memory: either resident or virtual
 - hard or soft limits default values if none provided
- ► Slots: almost always one for Local jobs
- ► Access to special resources: submitted to quotas

Intuituive Causes

- 1. HTC is not HPC! \sim low impact of time, memory, and slot requests
- 2. Lots of (stringent) quotas ~ wait more if reached!

When and Where is the Job Submitted?

Job and System features

- Submission time
- Current queue status: number of pending jobs
- Current platform status: number of running jobs

Intuitive Causes

Outline

- Introduction
- Some Intuitive Causes of Job Wait Time Who Submits the Job?
 What is the Job Requesting?
 When and Where is the Job Submitted?
- Learning-Based Job Wait Time Estimators
 Objectives and Performance Metrics
 ML Algorithm Selection
- Experimental Evaluation
- Conclusion and Future Work

Objectives and Performance Metrics

Objectives

- ▶ Regression problem: Estimate the time a job will wait when submitted
 - Users may not really need that level of precision
- Classification problem: Determine in which time range a job will fall

Class	Wait Time Range
1	Less than 30 minutes
2	30 minutes to 2 hours
3	2 hours to 4 hours
4	4 hours to 6 hours
5	6 hours to 9 hours
6	9 hours to 12 hours
7	12 hours to 24 hours
8	more than 24 hours

Performance metrics

- ▶ Learning and Prediction times: Has to be usable in production!
- ► Wait time estimation: Error distribution
- ► Wait time range classification: Confusion matrix

ML Algorithm Selection

Common Properties

- Rely on ScikitLearn implementations
- ► Favor fast algorithms

Regression

- ► Linear Regression
- Decision Tree Regressor
- Ensemble Methods
 - AdaBoost and Bagging
 - Depth-9 DT as weak learner
 - 50 subsets

Classification

- Naive Bayes
- Decision Tree Classifier
- Ensemble Methods
 - AdaBoost and Bagging
 - Depth-1 DT as weak classifier
 - 50 subsets

Additionnal Approach

Two-step Classification: solve regression and then classify

Accuracy of the Job Wait Time Estimation

- AdaBoost is bad
- ▶ Bagging ≈ DT
- Less than 1h error for 50% of the jobs
- Satisfying!

Accuracy of the Job Wait Time Estimation

- AdaBoost is bad
- ► Bagging ≈ DT
- Less than 1h error for 50% of the jobs
- Satisfying!

- ► Split by "zone"
- ► Better for early starters
- Degradation for others
- ► Not satisfying :-/

Accuracy of the Time Range Classification

 \sim 43 % of jobs in the right class

 \sim 73% of jobs in right or adjacent class

Accuracy of the Time Range Classification

Bagging Classifier

Accuracy of the Time Range Classification

Decision Tree Regressor + Classification

Conclusion and Future Work

Conclusion

- Analyzed 23 weeks of job submissions to a HTC center
- Identified some intuitive causes of job wait time
- ▶ Learn on 15 job and system features to predict job wait time
- ► Early results for Regression and Classification problems
 - Assessing the performance of multiple ML algorithms
 - ► Some biases have to be solved

Future Work

- Improve our predictions
 - ► Take early starter jobs into account
- Investigate the use of Deep Learning algorithms
- Automate and transfer procedure to User Support team at CC-IN2P3
- ▶ Integrate this work to the newly deployed CC-IN2P3 user portal

Learning-based Approaches to Estimate Job Wait Time in HTC Datacenters

QUESTIONS?

Luc Gombert and Frédéric Suter

IN2P3 Computing Center / CNRS