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Abstract—The current practice for fusion scientists running
first principle simulations on high performance computing plat-
forms is to either run their simulations and output their data
for post-hoc analysis, or to place in situ analytics into their
code. In this paper we examine a complex workflow using XGC
fusions simulation run on the Oak Ridge Leadership Computing
Facility’s supercomputer Summit, which also involve three anal-
yses as part of the results necessary for scientific discovery. We
discuss the challenges faced when implementing these algorithms
and present an original hybrid staging technique to help enable
the physicists to make discoveries during the execution of the
simulation. By creating this infrastructure, we can examine
complicated physics results, which may not have been possible
without the infrastructure. For example, our work enables the
online visualization of turbulent homoclinic tangle around the
magnetic X-point, breaking the last confinement surface. This
visualization could help fusion scientists to better understand and
improve the turbulence spread of plasma exhaust heat, which is
crucial toward realizing plasmas beyond the currently accessible
physics regimes of present-day tokamak reactors. The physics of
turbulent homoclinic tangle will be reported in a future physics
publication, by utilizing the original online analysis/visualization
framework presented in this paper.

Index Terms—Fusion Science, Online Analysis and Visualiza-
tion, Workflows, Extreme Scale

I. INTRODUCTION

The current practice for scientists from many different
domains, such as fusion energy, material science, and climate
modeling, is to design High Performance Computing (HPC)
simulations, run them on modern HPC systems, and once the
simulations are finished, analyze and visualize the produced
data. These scientific applications are now overwhelming the
storage and I/O systems of the largest supercomputers in
the world, often generating over ten Petabytes of data in
a single day. Many of these applications will soon require
Exabytes of output to make new scientific discoveries, and will
need new ways to cope with the growing disparity between
supercomputer computation speeds and I/O rates [1].

Over the last two decades, the HPC scientific data man-
agement community has researched many new techniques to

cope with the challenges related to this ever increasing need
for data analysis and storage. Three main areas have been
investigated. First, as the size of the data needed by scientists
for analysis increases, the need to improve the parallel I/O
layer to store data as fast as possible became more urgent.
The development of technologies, such as ADIOS [2] and
HDF5 [3], drastically improved the writing performance of
HPC simulations, achieving a throughput of over 1 TB/s on
one of the current leading supercomputers. Second, applying
data compression techniques reduces the size of the data
output, often by one or more orders of magnitude. For in-
stance, the lossy data compression techniques implemented by
MGARD [4], [5] allowed fusion scientists to reduce their data
by a factor of 77 while preserving many advanced quantities
of interest, such as mass, momentum, energy, and temperature
anisotropy [6]. Third, in situ processing of the simulation data,
i.e., analyzing and/or visualizing data as it is produced, enables
online diagnostics of simulated physics. The generic in situ
term now covers a broad range of computing motifs, where
data is either processed inline with the simulation on the same
resources, or staged and processed on separate analysis nodes,
or staged and processed on the same nodes but different cores
from where the simulation runs [7]. For several classes of
analysis, hybrid scenarios in which part of the calculation runs
inline and another part runs on a small number of analysis
nodes, constitutes the most efficient approach [8].

As scientists increasingly leverage these techniques to com-
plete their scientific campaigns, they create complex online
workflows that need to be efficiently executed. When sim-
ulations, analyses, and visualizations are designed in a way
that allows the components to be executed within a single
workflow, it allows data to be seamlessly streamed in mem-
ory, staged over a HPC network, or using files, and allows
adaptation of the data compression level to the importance of
the information stored. New scientific breakthroughs can be
expected in this paradigm. The approach allows simulation
data to be processed and monitored on the fly by domain



Fig. 1. Poloidal cross-section of plasma region in ITER, showing the magnetic
separatrix surface (the last confinement surface) and the divertor plate area.

scientists, computer scientists, and performance engineers,
enabling collaboration for multi-domain applications and faster
feedback regarding the state of the simulation, which can be
used to guide the discovery process and facilitate a faster
convergence to insightful knowledge.

In this paper, we design a complex in situ workflow that
includes a simulation from the fusion science domain, two
types of analysis, and a visualization algorithm, in order to
illustrate the associated workflow challenges and optimization
opportunities, as well as how these enhancements could help
enable new scientific discoveries. Our novel contributions
include creating the in situ GPU-based visualization and two
CPU analysis calculations, as well as optimizations to the
application code itself for hybrid staging, all of which help en-
able scientific insight at low resource cost. Section II motivates
the physics simulation case and its computer science ecosys-
tem, then Section III details our hybrid analysis/visualization
enhancements, and Section IV demonstrates the performance
impact and physics results of the work, with concluding
remarks in Section V.

II. MOTIVATION

High-fidelity first-principles based simulations for fusion
science are necessary to understand the fundamental physics
of plasma confinement and to enable predictive capability.
They help guide design decisions for future experimental
facilities, as well as inform successful operation of upcoming
experiments, such as ITER [9]. In the next decades, ITER
aims to realize plasmas that are well beyond the physics
regimes accessible in any present-day tokamak experiments.
The 5D kinetic Particle-In-Cell (PIC) code XGC [10] has been
developed to study the physics of such cases: foremost, to
carefully simulate the complicated multi-physics in the edge
of the plasma (red region in Figure 1). These simulations are
compute intensive, requiring large HPC systems.

XGC solves the Vlasov kinetic equation after reducing its
phase-space dimensionality from 6D to 5D. The relevant turbu-
lence and particle dynamics in magnetized tokamak plasmas
have characteristic time scales much slower than the gyro-
frequency. Thus, the fast gyro-motion is analytically reduced
to gyro-rings, removing the gyro-phase angle dimension. The
resulting equation is the 5D “gyrokinetic equation.” To reduce
particle noise, XGC uses about 10 trillion marker particles for
simulation of ITER plasmas, and runs on today’s most power-
ful available supercomputer, Summit [11]. This dimensionality
reduction in formulating the gyrokinetic equation is necessary,
because it is impossible to perform a full 6D kinetic Vlasov
simulation of tokamak plasma even on an exascale computer;
it is too computationally expensive.

Following the PIC approach, particles are time-marched in
the electromagnetic field that is gathered from a discretized
mesh, and next undergo Fokker-Planck collisions, then the
charge and current are deposited to the mesh, and the Poisson
and Ampere’s equations are solved to obtain the electromag-
netic field on the mesh. Figure 1 shows an ITER mesh for
XGC. The unique feature of XGC is that it accommodates
complex edge geometry using an unstructured triangular mesh
that includes realistic divertor plates (where the exhaust heat is
gathered and dissipated) and the magnetic separatrix (which is
the last confinement surface). XGC also includes Monte Carlo
neutral atoms, with atomic interactions with plasma, that are
generated by bombarded plasma particles on the divertor plates
and recycled back into the plasma.

Over the last 13 years, different software frameworks have
been tightly integrated into the XGC ecosystem to allow
scientists to analyze data in more depth and discover new
effects [12], [13]. Most of the older implementations were
designed with the workflow framework Kepler [14], a fast
I/O framework [15], as well as other HDF5 I/O for some
output, and a dashboard [16]. Evolving toward exascale has
necessitated updates for even tighter integration of technolo-
gies [17], [18]. The inclusion of lossy compression to reduce
the total data output is also beginning to be evaluated, using
either MGARD [6] or SZ [19], and requiring that the errors
of derived quantities remain smaller than a specified bound.

ITER targets energy gain, but there are potentially serious
impediments to operating in the target regime where 10 times
more internal fusion energy is produced than the external
input energy (Q=10), which urgently needs to be understood
and resolved. Exploration of present tokamak data show
that the exhaust heat on Q=10 ITER could be focused on
such a narrow-width channel that the peak power density
would significantly exceed the material’s endurance limit. This
could cause damage to the material wall, called the “divertor
plates”, even at the very first Q=10 attempt. Remedies to
this impediment require difficult operational scenarios that
could slow scientific progress. However, recent extreme-scale
XGC simulations predict that Q=10 ITER is in a different
physics regime and the heat-load width is expected to be 6-8
times wider at about the original design level than what was
predicted by extrapolation of previous data. This hints at the



possibility that the operation of ITER could be much easier,
allowing faster scientific progress.

A remaining question in the new finding is a fundamental
understanding of the physics mechanism that broadens the
divertor heat-load width in the Q=10 ITER plasma. This
understanding could enable physicists to test the phenomenon
in present tokamaks and, if validated, to create methods to
broaden the heat-load width even further. The main difficulty
is the complexity of the electromagnetic turbulence physics in
the vicinity of the last confinement surface.

Understanding the fundamental particle-turbulence interac-
tion dynamics requires workloads containing a few data analy-
ses of the different physics phenomena, and more importantly,
to combine these analyses together coherently in space-time.
However, running all these analyses inline would slow the
simulation to an unacceptable level and post-hoc processing
would not capture the nonlinear particle-turbulence interaction
self-consistently. Thus, we must couple multiple codes, includ-
ing XGC and analysis/visualization codes, into one complex
workflow. For each of the analyses, there is the decision of
where the computation occurs (inline with the simulation,
on dedicated resources, or following a hybrid approach),
when the analysis is performed (synchronously, right after the
simulation’s data is produced or asynchronously, happening
concurrently with the simulation), and how the communication
occurs (files versus memory versus staging). Each decision
results in performance trade-offs between multiple parameters
and design choices, and strongly depends on the behavior of all
the codes involved. Separating the analysis from the simulation
allows for higher concurrency and decreases the total time to
solution as long as the analysis can scale and keep up with the
simulation steps. Conversely, the additional data movements
may degrade performance due to network or I/O congestion.

We will demonstrate that by running XGC coupled with
analysis and visualization codes at scale in a hybrid workflow,
we are able to visualize the turbulent “homoclinic tangle”
dynamics online, while an inline or post-hoc [20] workflow
would slow the time to insight to an unacceptable level
for large simulations. As shown in Section IV, the tangled
structure makes the last confinement surface break into wild
lobe-like structures around the magnetic X-point. Puncture
plots of a dynamic turbulent homoclinic tangle need to be
visualized at every simulation output step online, as funda-
mental understanding of the turbulent phenomena could be
key to understanding the spread of plasma exhaust heat for
Q=10 ITER operation. While homoclinic tangle science is not
the subject of this paper, the hybrid analysis tools established
and discussed in this paper will be utilized to advance this
science, which will be reported elsewhere in the near future.

III. ANALYSIS OVERVIEW

A commonly accepted belief in the HPC community is that
because of the ever increasing gap between computing per-
formance and storage throughput in modern supercomputers,
writing all the data produced by a numerical simulation has be-
come intractable and an in situ approach should be preferred.

This in situ approach consists of intertwining simulation and
analysis/visualization to process data as it is generated. Such
processing can either use the same computing resources as
the simulation or leverage additional resources. In the former
scenario, data stays in memory and can be analyzed/visualized
without any data movement, but this requires the simulation
to effectively pause to run the analysis. In the latter scenario,
data are staged to other resources, either cores on the same
nodes as the simulation or on a distinct set of nodes, which
allows the simulation and analysis to run concurrently. Hybrid
methods combine the two approaches; a short processing phase
is performed inline with the simulation to leverage data locality
before staging data to other resources to perform additional
complex operations.

In this section, we overview the hybrid in situ data
analysis/visualization strategy that we devised for the XGC
workflow. Our intent is real applicability; the chosen analy-
ses/visualizations were motivated by the needs of the XGC
application scientists themselves. Three additional workloads
run: one for Poincaré puncture plot visualization (Sec-
tion III-A); another to calculate a heat load analysis (Sec-
tion III-B); and a third to compute diffusion (Section III-C).
Section III-D comments on each specifically, including execu-
tion performance implications, explaining challenges and the
approaches we adopt to address them. We aim to compose our
workflow such that the inclusion of the analysis does not incur
significant additional cost to the XGC simulation time.

A. Poincaré Puncture Plot

Efficient fusion reactor design requires the magnetic con-
finement of the plasma inside the tokamak. Because of this,
analysis tools for understanding the dynamic nature of the
magnetic field are critical. The complexity of the three-
dimensional magnetic field lines makes analysis and visu-
alization difficult. Because the field lines are periodic, this
complexity can be reduced by using a Poincaré magnetic field-
line puncture map [21]. The Poincaré map is the intersection
of a field line with a lower dimensional subspace (called the
Poincaré section). In our case, the Poincaré section is a two-
dimensional plane that is perpendicular to the axis of the
tokamak. Given a set of magnetic field lines, the Poincaré map,
or intersections of magnetic field lines with the plane provides
a concise representation of the magnetic field that is easier to
understand and analyze.

In practice, the Poincaré map is generated by creating a
large number of field lines and plotting each intersection, or
puncture, with the plane. After a sufficient number of punc-
tures have been collected, patterns in the map characterize the
features in the magnetic field. The pseudo-code in Algorithm 1
describes how the Poincaré map is created. The field lines are
computed by advecting a number of massless particles through
the magnetic field. The intersections generated from a single
particle characterizes the features of the magnetic surface at
that position. The particles are advected using a differential
equation solver, such as the 4th order Runge-Kutta scheme
(RK4). In order to characterize the magnetic field, a large



number of particles must be intersected with the perpendicular
plane. Because of this, the computation of a Poincaré map can
be very expensive. However, the trajectory of each particle
needed to compute a Poincaré map is independent from all
other particles. Hence, the calculation of can be parallelized
over each particle.

Data: Plane, VecField, Field line initial positions P
for i← 1 to N do

p← P (i)
NumberOfPunctures ← 0
while NumPunc < MaxNumPunc do

pNext ← RK4Solve(p, VecField)
Dir ← pNext - p
Ray ← ray at p in direction Dir
if Ray intersects Plane then

Pi ← Intersection of Ray with Plane
NumPuncs ← NumPuncs + 1
Record Pi

end
p← pNext

end
end

Algorithm 1: Poincaré map algorithm.

Our implementation uses VTK-m [22], which is a toolkit for
efficient and portable analysis and visualization on many-core
processors. VTK-m provides a set of data parallel visualization
primitives that allows a straightforward mapping of an execu-
tion task to data [23]. For the Poincaré map, the execution task
is the inner loop in Algorithm 1 that computes the field lines
using an RK4 integrator and performs the intersection with the
plane. This execution task is applied, in parallel, to all of the
particles. This particular task is well suited to running on a
GPU because each particle and execution task can be placed in
a thread. Peak efficiency can be achieved if there are enough
execution threads to keep the GPU busy. The performance of
the algorithm is governed by two factors, one minor and one
major. The minor factor is the number of particles. VTK-m
will place as many particles on the GPU as possible. If the
number of particles exceeds the number of threads on the GPU,
the particles will be processed in batches. The major factor is
the number of punctures that are computed. The most costly
operation in the algorithm is the RK4 integration step and the
number of times it must be performed is directly proportional
to the number of punctures computed.

B. Heat Load Calculation

The divertor heat load is the thermal energy deposition from
the plasma to the divertor plates. Estimating the width of
heat load on the divertor plates is critical for fusion reactor
design and operation [24], [25]. With kinetic simulations and
statistical analysis, one can estimate the contributions to the
heat load profile, Γheat, from particle motion, and the origin
of the divertor heat load can be identified from the particle
trajectories. In collaboration with XGC researchers, we have
been developing a fine-grained, time-varying, origin-specific

heat load analysis method based on particles. The heat load
to the material wall is calculated as

Γheat =
∑

Pi∈Ψj ,Ao

wiE(Pi)/∆t∆S, (1)

where E(Pi) represents the kinetic energy of particle Pi with
weight factor wi when it hits the divertor at segment Ψj from
origination angle segment Ao. ∆t and ∆S are the time interval
and the area of the segment Ψj . Here, the origin means the
location of the particles when it escaped the separatrix.

The approach involves a tracking process, which identifies
particles in the relevant parameter space of the tokamak and
saves their information when it escapes the separatrix. When
the escaped particles are identified, their information is pushed
to a database and later retrieved when the tagged particles
hit the divertor. The size of this database could grow to
hundreds of GBs, or even TBs at scale. While the heat load
computation itself is simple, involving only a modest number
of boolean operations and summations, the communication
costs and the highly distributed nature of the particles in
XGC present challenges. The database operations cannot be
local-only because which node an XGC particle is hosted
on changes during load balancing operations. Furthermore,
the number of tagged particles will not be constant between
different XGC processes, which leads to imbalanced particle
searching. Ultimately all processes synchronize to complete
the calculation, meaning a significant number of the processes
might be idling due the balance asymmetry.

To mitigate the cost of a full inline heat load calculation
inside XGC, we have developed a method for use on external
analysis nodes, where dedicated particle tracking processes run
in parallel, outside the simulation. XGC tags the particles, then
asynchronously writes them with ADIOS, to be ingested by
the heat load analysis application, which identifies the particles
to sum over, then computes the final quantity. This algorithm
is detailed in Algorithm 2.

Data: N tagged particles at step t
Result: Heat load calculation
Heatload ← 0
for i← 1 to N do

if Pi is escaped then
UpdateParticleDB(Pi, t)

end
if Pi is in divertor then

Pesc, Ao ← SearchParticleDB(Pi, t)
Γheat,Ao ← HeatLoadCalc(Pesc, Ao)

end
end
// Distribute and merge Particle DBs

AllGather(ParticleDB)
Algorithm 2: Heat load calculation algorithm.

C. Diffusion Calculation
Particle dynamics in the edge plasma are of great interest

to the fusion community. Turbulent eddies associated with



large-amplitude plasma pressure perturbations are common
phenomena and are believed to mediate a significant amount
of plasma transport across the magnetic field lines onto
plasma facing components [26], [27]. Detailed observations
of the plasma particles contributing to this transport channel
would allow better characterization of its statistical properties.
Moreover, by estimating transport properties, such as diffusion
coefficients, these high-fidelity simulations could inform low-
fidelity edge plasma fluid modeling. Low-fidelity simulations
are regularly performed for predictive modeling of plasma
discharges, as well as in other situations where operational
constraints do not allow high-fidelity plasma simulations.

Dispersion of an ensemble of particles is measured by the
mean-squared displacement:

MSD = ⟨(∆r − ⟨∆r⟩)2⟩, (2)

where ⟨·⟩ denotes an ensemble average and ∆r denotes
a particle’s change in position over a unit time step. The
scaling of the MSD with time characterizes the dispersion
characteristic of a particle ensemble. The case where MSD
increases linearly with time, MSD ∼ t, is called diffusion,
and a dependency MSD ∼ tα with α greater or less than
unity is called super- or sub-diffusive, respectively.

Considering only cross-field motions, a radial displacement
is calculated as ∆r =

(
1

RBpol,0
+ 1

RBpol,1

)
Ψ1−Ψ0

2 , where R

denotes the plasma major radius, Bpol denotes the poloidal
component of the background magnetic field, Ψ is the normal-
ized radial magnetic flux, and the numerical subscripts indicate
whether the value is taken at the start or the end of the unit
time step.

In XGC simulations, the MSD in Equation 2 are calculated
for particles that cross from the confined plasma region into
the scrape-off layer at a single given time step. Once the
simulation reaches this time step, a flag is set in the particle
structure of every particle that just crossed the separatrix.
In addition, the triangle of the simulation grid where the
particle crossed the separatrix is stored. In a following step,
this information aids in reconstructing grid quantities using the
MSDs. Over the next T subsequent time steps, these flagged
particles accumulate via

⟨∆r⟩ =
T∑
t=1

w̄p
t∆rpt /

T∑
t=1

wp
t (3)

⟨(∆r)
2⟩ =

T∑
t=1

w̄p
t (∆rpt )

2
/

T∑
t=1

wp
t , (4)

where w̄p
t is the geometric weight of w0w1 at the beginning

and the end of the given time-step. This method is described
in Algorithm 3.

While the MSD is a particle quantity, transport coefficients
such as diffusion coefficients are fluid quantities and are
defined on the simulation grid. In order to gather relevant
particle information over the entire grid, our implementation
divides the necessary reductions into two separate steps. On
the simulation side, every MPI rank accumulates ⟨△r⟩ and

Data: AoSoA of marker particles
Result: AoSoA of marker particles with updated fields

∆r and (∆r)
2

for p← 1 to num ptl do
if particle[p] is flagged then

update particle[p].∆r, Eq. (3);
update particle[p]. (∆r)

2, Eq. (4);
end

end
Algorithm 3: During the particle push, flagged particles
accumulate 3 and 4.

⟨(△r)
2⟩ into bins which map to the simulation grid triangles

where a particle crossing was registered. This calculation is
described in Algorithm 4.

Data: AoSoA of marker particles
Result: dr[num tri] and dr2[num tri]
for p← 1 to num ptl do

if particle[p] is flagged then
ptl crossed[particle[p].tri crossed] += 1 ;
dr[particle[p].tri crossed] += particle[p].∆r ;
dr2[particle[p].tri crossed] +=
particle[p]. (∆r)

2 ;
end

end
for i← 1 to num tri do

if ptl crossed[i] > 0 then
dr[i] /= ptl crossed[i] ;
dr2[i] /= ptl crossed[i] ;

end
end

Algorithm 4: During the diagnostic time step, flagged
particles deposit their accumulated ∆r and (∆r)

2 to the
triangle where they crossed the separatrix.

The triangle data is then sent to the data analysis node. At
the data analysis node, the accumulated MSDs, binned into
their respective triangle, are again averaged over triangles. The
resulting quantities are Eqs. (3) - (4), per triangle and averaged
over the total number of particles that crossed the separatrix
at that triangle. Our hybrid scheme effectively offloads an
all-reduce across the MPI ranks from the simulation to the
analysis node, as illustrated in Algorithm 5. This comes at the
cost of transferring a table to the data analysis node, whose
number of rows is given by the number of triangles where
particles crossed the separatrix, with three columns: a triangle
number, as well as ⟨∆r⟩ and ⟨(∆r)

2⟩, both averaged over an
ensemble of particles.

D. Execution Strategy

Computing Poincaré maps for XGC could be carried in
several ways, with variations of inline analysis or offloaded
analysis on a separate node.

The first method, synchronous inline in situ analysis, as-
sumes that after each XGC time step, the Poincaré analysis



Data: dr[num tri] and dr2[num tri] for each MPI
rank

Result: dr[num tri] and dr2[num tri]
dr ← MPIAllreduce(dr);

Algorithm 5: The analysis node combines triangle-
deposited ⟨∆r⟩ and ⟨(∆r)

2⟩ from all MPI ranks.

will be computed on the same nodes. Field lines from the
initial particles will be generated and intersected with the
perpendicular plane. Because the information for the magnetic
field is spatially distributed across the set of computational
nodes, communication is required when a particle exits the
spatial boundary. This method is inefficient for two main
reasons. First, the particles to be advected will be distributed
across a large number of simulation nodes. As such, the
particle to GPU ratio will be very low. Second, communication
at the scale of the simulation will be very inefficient.

The second method outsources the visualization syn-
chronously. After each XGC time step, the magnetic field data
will be communicated to a small set of the simulation nodes
where the Poincaré map will be computed. This improves the
particle to GPU ratio considerably and reduces communica-
tion, which will considerably improve the analysis efficiency.
However, the rest of the simulation nodes will be blocked until
the analysis is complete, which is wasteful.

Another method is asynchronous in transit in situ analysis.
After each XGC time step, the magnetic field data will be
transferred to a separate set of nodes. Once the transfer
has completed, the Poincaré map can be generated, while
XGC continues the simulation. Since the computation of
the Poincaré map may take longer than an XGC time step,
multiple GPUs can be used in a round robin fashion to
calculate each time step.

The key to efficiency for algorithms that run on a GPU is to
keep the GPU saturated with work. The first method does not
achieve this, as the particle to GPU ratio is low, and it requires
communication. When attempting an initial implementation,
this approach stalled each step with visualization more than
an order of magnitude compared to the XGC step time. The
second method can be efficient because the particle to GPU
ratio is high, but it still stalls XGC. The third provides a high
particle to GPU ratio and does not stall the simulation, which
is why we chose this approach.

The heat load and diffusion analyses both require synchro-
nization between all nodes. In the case of the heat load,
an AllGather at the end of Algorithm 2. In the case of
diffusion, the AllReduce at the end of Algorithm 5. As with
the Poincaré code, the analysis codes can be run inline or
offloaded on a separate node. While the computational parts
are simple for both codes and can easily be executed inline, the
reductions needed at every step can present challenges when
running inline.

The heat load analysis keeps a memory of all the tracked
particles in a ParticleDB. During an XGC run there can be up
to 107 tracked particles, requiring a total of 16 GB of data for

each stored step. The average lifespan of a tracked particle is
∼ 100 steps, which puts an upper bound of 1.6 TB for the
ParticleDB memory. If each process is storing a local view of
the database, which can grow with every time step towards
this upper bound, the available memory per node could be
exceeded. One solution is to load balance the database every
few steps, but this will add an extra cost to the execution of
XGC. By offloading the analysis to separate nodes, the load
balancing is external and done during the external AllGather
in Algorithm 2. In addition, since the Poincaré code leverage
the GPUs and is not memory intensive, the heat load code can
run on the CPUs of the same compute nodes.

The Diffusion analysis code is composed of three steps:
i) the accumulation of ⟨△r⟩ and ⟨(△r)

2⟩ into bins which
map to the simulation grid triangles where a particle crossing
was registered; ii) a reduction of all the bins across all the
processes; and iii) the averaging of MSDs over triangles. The
entire execution could be done inline and use an AllReduce
for the reduction phase. While this is not expensive at small
scale it could become more significant when a large number of
processes are used. It is not particularly memory intensive, so
we co-locate it with the heat load analysis in our workflows.

IV. EXPERIMENTAL RESULTS

Our experimental tests consist of XGC fusion simulations
and associated in situ analysis/visualization of the data. Sec-
tion I outlined the necessity of more robust tokamak edge
simulations to better understand the operating regime of ITER.
Accordingly, we configure XGC to study electromagnetic
turbulence in the vicinity of of the magnetic separatrix. The in
situ analysis processes are those explained in Section III: the
Poincaré puncture plot visualization, along with the heat load
and diffusion calculations. All jobs are composed and executed
using the EFFIS workflow system [17], whose primary design
target is workloads of the variety executed in this paper.

We perform our simulation and analysis on the Oak Ridge
Leadership Computing Facility (OLCF) supercomputer Sum-
mit. Summit is a 200 PF system of 4,600 nodes, where
each nodes consists of 6 NVIDIA Tesla V100 GPUs and
2 IBM POWER9 CPU processors, for a total of 42 cores
per node; 512 GB of DDR4 memory is available for use by
the CPUs, with 96 GB of High Bandwidth Memory for the
accelerators. Nodes are interconnected by a Mellanox EDR
100G InfiniBand network of non-blocking fat tree topology.
Summit mounts an IBM Spectrum Scale parallel file system
called Alpine, which consists of 77 storage server nodes, with
a total capacity of about 250 PB and a maximum theoretical
bandwidth of 2.5 TB/s for sequential I/O.

Our measurements begin with a set of XGC scaling runs,
on 256, 512, and 1,024 nodes. XGC uses the Summit GPUs,
placing one MPI process for each of a node’s 6 GPUs, with
threading parallelization across the multiple cores. XGC’s
mesh is constant between runs, with the total particle number
multiplying identically with the node count scaling, which
amounts to a form of weak scaling. We present XGC perfor-
mance, with time step breakdowns, beginning in Section IV-A.



Fig. 2. Breakout by main PIC code phases of the average XGC time step duration on Summit when the number of nodes increases (weak scaling). Odd (left)
and even (right) time steps are distinguished.

In each node case, the run is repeated five times, incrementally
adding some or all the in situ analysis to the workflow: (1)
first running XGC only, (2) next running XGC and the heat
load calculation, (3) then running XGC and the diffusion
calculation, (4) then running XGC and the Poincaré visualiza-
tion, and (5) finally, running XGC with all three. In the final
case, the Poincaré puncture processing is dedicated its own
node, with the heat load and diffusion executables sharing
one separate node. Otherwise, any analysis runs on its own
single node; XGC is never co-located with them. The heat load
executable runs with 5 MPI processes and 7 threads each; the
diffusion application with 7 processes of a single thread. XGC
executes for 10 time steps, outputting the data for analysis
using ADIOS. In each of the five cases, I/O transport for the
analysis data has been configured using either files or RDMA
staging, and we observe file system/network variance on the
shared system. Results for these workflows are presented
and discussed in Section IV-C, including an analysis of the
resource cost added. In addition, Section IV-B presents scaling
performance of each of the analysis/visualization processes
themselves; the puncture plotter’s performance study requires
additional, single-node jobs to understand its time dependence,
which are described therein.

While our performance results are aggregated across XGC
jobs limited to 10 time steps, our analysis contributions include
their applicability across much longer runs, which are needed
in real physics studies. It was not cost-feasible for us to run
long time baselines for all our experiments, but we include
plot figures of the analyses applied to data from related runs
provided by the XGC team. These are found in Section IV-D.

A. XGC Performance

Before assessing the performance and impact of adding
analysis/visualization to the execution of XGC, we analyze the
performance of the fusion code itself. We performed a weak
scaling analysis of XGC in which the number of particles
increases linearly with the number of nodes, but the mesh

remains the same for the different node counts. This results
in a super-linear speedup of the execution times. Figure 2
illustrates the causes of this speedup. It details the time spent
in each of the main phases of a PIC code. While the time of
most phases remain constant as the number of nodes increases,
that of the “Collisions” and “Diagnostics” phases decreases.
This is because the time complexity of these particular phases
is directly related to the size of the mesh and not the number
of particles in each cell. Moreover, the “Collisions” phase is
only executed every other step, and “Diagnostics” only has a
small odd-step time. “Diagnostics” is where XGC computes
analysis internally and where output occurs, most of these
calculations and writes occurring only every other step. The
odd-time “Diagnostics” have been added by the work in this
paper, a component in facilitating the offload of the heat load
and diffusion calculations to the external analysis nodes. What
is needed for the Poincaré plotting is in the usual output
occurring every other step.

While our I/O offload strategy ensures that in situ analysis
does not pause the simulation progress in the way inline anal-
ysis would, it is still preferable not incur significant additional
job resource cost; for example, if an analysis application runs
longer than the simulation. Even if the in situ analysis itself
only occupies up to two nodes, the job is still charged for the
XGC nodes, too. Understanding the analysis performance and
workflow resource costs occupies the next two subsections.

B. Analysis Performance

Here, we present the respective performance of our three in
situ analysis applications: Poincaré puncture plot visualization,
heat load width estimation, and particle diffusion calculation.
These profiles are key to better understand how to optimize the
design of our complex workflow involving cutting edge XGC
simulations and the analysis/visualization of data produced by
it. For instance, it allows us to consider if specific analysis
should be inline with XGC in the future or how much node
sharing is appropriate between the three. In the case of the
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Fig. 3. Poincaré plot GPU performance. Note, both axes are log2 scaled.

puncture visualization, there is also a question of how to set
the parameters affecting the output plot resolution.

The Poincaré puncture plotting only requires data quantities
that are discretized over the XGC grid, not any simulation
particle data, and hence should not systematically depend on
the XGC node count scaling. However, it includes a few
parameters that impact the visual fidelity of the output visual-
ization and that significantly affect the application’s execution
time – Npunc: the number of punctures to compute; Nψ: the
number of points chosen uniformly along the radial magnetic
axis; and Nθ: the number of points chosen uniformly along
the toroidal axis. Here, we do not have any hard requirements
on the minimum settings, but increasing them is better for
improved figures. See Figure 7 in Section IV-D for an example
output of an Npunc = 500, Nψ = 500, Nθ = 100 output.

Figure 3 plots the time dependence over the three pa-
rameters. Each point in the plot has been generated as an
average over 256, 512, and 1,024 node XGC data sizes, whose
variation between sizes is not visible on the figure; a single
choice between them would have sufficed. What is observed
in Figure 3 is linear scaling with Npunc along the x-axis, and
roughly log2(NψNθ) scaling between the different lines. This
parameter space informs how to configure the application in an
XGC run. In our case, the puncture analysis runs every other
step because that is the XGC output cadence for the data it
needs; we conservatively used settings for (Npunc, Nψ, Nθ) at
the bottom left of the plot, which is less than the sum of two
steps in Figure 2 (that is, Figure 7’s dashed horizontal line).
However, we note that our implementation for this analysis
runs the heavy calculation on GPUs, dispatching a new data
step to a process attached to a single accelerator in a round
robin fashion as the new data steps become available. Figure 3
measures the time for one execution time on the single GPU.
Parallelized over six GPUs on a Summit node, and even
multiple nodes if desired, the visualization processing could
keep up even if a step takes longer than an XGC step (possibly
cutting off the processing for the latest steps of XGC and
computing those post-job). Still, even time values toward the
bottom left of Figure 3 would be a significant inline cost to
XGC; it would parallelize some over the GPUs of the many
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Fig. 4. CPU time spent in the heat load and diffusion hybrid analyses.
The lightest shaded bars are the times added to XGC itself to accommodate
the analysis, while the remainder are measured from the in situ applications
running on the separate data analysis node.

XGC nodes, but as explained in Section III-D, performance
depends on keeping the GPU saturated, and breaking the work
over many nodes would not simply divide the time identically,
i.e. indefinite downward strong scaling does not hold. Not
incurring this cost is why we have exported the analysis to
another node, and Figure 3 supports that this approach can
flexibly keep up.

Figure 4 plots performance times for the heat load and
diffusion calculations, which run on the CPUs. Included in
the plot are the times XGC itself spends for the offload.
For the diffusion analysis, the results indicate that the full
calculation could reasonably be inlined into XGC without too
much penalty. Its data read time can be thought of as upper
limit on the additional communication time that would be
incurred, (because MPI gathering will outperform ADIOS),
and the calculation itself is not heavy either. Less than one
second per step total is tolerable. On the other hand, little
harm results from the offload. Not much time was spent in
the XGC offload phase, whose data movement cost would
be diminished for a fully inline version (again, because MPI
will outperform ADIOS.) The heat load calculation shows a
somewhat higher cost, approaching 5% of the XGC step time.
This would decrease if we dedicated more than a single node
to the heat load application or if it were inlined to XGC and
parallelized across the many running processes. The problem
is the high fraction of the time spent in database operations.
Communication cost will not simply divide with node count.
While an upper limit of four seconds is not an enormous inline
cost to potentially add, at any rate, the one second offload is
sustainable.

C. Workflow Performance

We now consider overall workflow performance for our
job loads: variations in the coupling of XGC to the analy-
ses/visualizations and the costs associated in doing so. Figure 5
examines the suite of 256, 512, or 1,024 node workflows with
file-based analysis data offload. Each node count considers
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the five job types we described in the introduction to Sec-
tion IV: XGC only, XGC plus any of the three single analyses
individually, and XGC with all three. The bars indicate the
variation between the runs, as a result of the file system and
network contention on the shared supercomputer. The largest
outlier is 512 nodes, enough to outweigh the super-linear
weak scaling. File system variance is not unexpected; shared
parallel file systems are known to be vulnerable to cases of I/O
overload, where large slowdowns are observed during write
operations [28], [29], [30], [31]. XGC operation includes a
number of file outputs, (among them are those needed for
our in situ analyses), used for many different types of I/O
operations, such as simple diagnostic output as text. All this
file output impacts all cases in Figure 5 and contributes to
the total variance. Network contention is another factor, but
is not expected to cause as large of outliers on its own, and
impacts both the file and staging output because both use the
system interconnect. In the cost analysis of Figure 6 below,
we consider only the staged analysis data, as it is the modestly
more robust option against large variation outliers. None of the
conclusion are impacted in making this choice, but it affords
a simplified figure that is easier to read.

Figure 6 measures the job cost of running the five work-
flows, with the lower panels indicating the difference com-
pared to the lowest in a node group. The results indicate that
little extra cost is incurred by adding our in situ analysis to
the workflow. Theoretically, it should be the XGC step time
multiplied by one in first three analysis cases or multiplied
by two in the case with all analyses – that is, the number of
one or two extra nodes that have been requested for the job.
However, the system variation is typically the larger effect,
and in many cases, the jobs with analysis happen to cost less
than the XGC-only jobs. Figure 6 represents our foremost
performance result, and Section IV-D continues by discussing
the physics implications of these analysis results that can be
deployed at little resource cost.

For our large job launches, we made the initial decision
to separate the Poincaré plotting onto and single node, with
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the diffusion and heat load calculations on a different node.
However, this was not necessary; they could all be co-
located. While we were unable to rerun all the XGC jobs
again, (which are the computationally expensive pieces of the
workflows), we did conduct follow up tests with all three
analysis/visualizations co-located, using the data that had been
saved from the file-based transport runs, to confirm error-
free performance consistency with what has been presented
in Figure 3 and Figure 4. However, we choose to include the
slightly more pessimistic cost addition of two extra nodes in
Figure 5, as that is how the fully online version was run.

The puncture plot GPU visualization is expensive, and best
suited to be offloaded to analysis nodes rather than inlined
inside XGC. If this analysis is to be included in the workflow,
the diffusion and heat load pieces might as well be done on
those nodes as well, making use of the free CPUs. While
the heat load piece is possibly memory intensive enough
to require more than a single node (Section III-D), we did
not actually encounter a scenario where it caused an out of
memory error in the co-located executables on the same node;
more than one node may be preferred for the visualization
anyway for increased output fidelity. Post-hoc analysis is an
option, but comes at the cost of subideal lag until after the
conclusion of a potentially days-long XGC run, where the
Poincaré computation could be lengthy too for many time steps
and/or high image resolution.

D. Physics Results

Figure 7 is a snapshot Poincaré puncture plot of the tur-
bulent magnetic field lines, obtained from our in situ visu-
alization application, after an XGC run of about 500 time
steps (∼ 7 ms) for an ITER plasma modeled for a stationary
energy-production state without violent MHD instabilities. We
zoom in on the X-point area of the plane. One observes



Fig. 7. A snapshot Poincaré puncture plot of the fluctuating magnetic field at
the edge of ITER plasma. The plot on the left shows the entire poloidal plane
and the image on the right shows a zoomed in region of the highlighted area.
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Fig. 8. Heat load footprint analyzed online with turbulence-consistent particle
tracing in XGC. Different colors designate particles originating from different
poloidal angles on the separatrix.

turbulent tangled magnetic field lines. Identifying, visualizing,
and analyzing features of this kind are essential; more study
is needed. They are suspected to contribute significantly to
the plasma’s consequential loss to the material wall, and to
the plasma leakage in ITER from inside the stable separatrix
surface, which has been assumed to be the last confinement
surface in stationary fusion-producing operation. If this visual-
ization were to be generated inline within the XGC nodes, as
has been previously considered, due to non-scalability of the
visualization process, the job would have taken days longer.

Figure 8 demonstrates physics results computed from the
heat load footprint analysis application, after about 600 ITER
simulation steps. Different colors designate particles origi-
nating from different poloidal angles at the last confinement
surface (separatrix). For the first time, this online analysis
allows application physicists to study from where the peak
heat-load originated. Figure 8 indicates that the highest density
heat load is from the separatrix-crossing particles around
the poloidal angle A8. This type of analysis informs fusion
scientists to closely monitor turbulence, such as turbulent
homoclinic tangles, around the poloidal angle A8.

Finally, Figure 9 shows the time-dependent mean squared
displacement of electrons and ions across the magnetic sur-
faces, which are traveling toward the divertor plates, after
10 ms of physical time simulation. In each curve, one point is
calculated per simulation time step, with the individual particle

Fig. 9. Time evolution of the mean square displacement of plasma electrons
and ions across the magnetic surface that are on the to the divertor plates.

displacement data obtained at each time evaluated inline in
XGC, then sent to the analysis node for online statistical
handling, visualization, and physics discovery.

V. CONCLUSION

In the next decade, ITER’s objective is to realize plasmas
that are well beyond the currently accessible physics regimes
in present-day tokamak experiments. To best understand the
complicated multi-physics in the edge of the ITER plasma at
the most fundamental level, one needs specialized 5D gyroki-
netic simulations, which are currently only possible with the
XGC code. As more physics have been added to simulations to
study the possible damage to the divertor plates from exhaust
heat, new data outputs and analysis of those outputs are needed
for the measurements. Our team has inserted code directly into
XGC, as well as used additional nodes for running complex
analysis, to form a hybrid staging approach to the problem.

In this work, we have examined three important data analy-
sis additions to the XGC results: Poincaré puncture plots, heat
load footprint computation, and particle diffusion calculation.
Because the Poincaré plots are very expensive, the analysis is
most seamlessly executed by staging to a few extra nodes and
using a round robin approach to keep up with the simulation,
making full use of the GPUs on Summit. Furthermore, the
CPUs on these nodes can then be used to perform the heat
load and particle diffusion calculations. Importantly, the extra
analysis nodes come at a much lower additional resource cost
compared to that of the XGC workload itself. By creating this
infrastructure, we are able to examine complicated physics
results, which may not have been possible without this in-
frastructure. For example, our work on online visualization of
turbulent homoclinic tangles allows fusion scientists to better
understand and potentially improve the turbulence spread of
plasma exhaust heat. The physics of the turbulent homoclinic
tangle will be reported in a future physics publication and
will fully utilize the online framework described in this
paper. While we have focused on an XGC-specific case, the
hybrid staging approach is more generally applicable; similar



considerations have been discussed elsewhere, e.g. for laser-
plasma with WarpX and analytics [32].
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P. Navrátil, P. O’Leary, M. Parashar, V. Pascucci, J. Patchett, T. Pe-
terka, S. Petruzza, N. Podhorszki, D. Pugmire, M. Rasquin, S. Rizzi,
D. Rogers, S. Sane, F. Sauer, R. Sisneros, H.-W. Shen, W. Usher,
R. Vickery, V. Vishwanath, I. Wald, R. Wang, G. Weber, B. Whitlock,
M. Wolf, H. Yu, and S. Ziegeler, “A Terminology for in situ Visualiza-
tion and Analysis Systems,” International Journal of High Performance
Computing Applications, vol. 34, no. 6, pp. 676–691, 2020.

[8] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci et al., “Combining in-situ
and in-transit processing to enable extreme-scale scientific analysis,” in
SC’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. IEEE, 2012, pp.
1–9.

[9] see https://www.iter.org.
[10] S. Ku, C. S. Chang, R. Hager, R. M. Churchill, G. R. Tynan, I. Cziegler,

M. Greenwald, J. Hughes, S. E. Parker, M. F. Adams, E. D’Azevedo, and
P. Worley, “A fast low-to-high confinement mode bifurcation dynamics
in the boundary-plasma gyrokinetic code xgc1,” Phys. Plasmas, vol. 25,
p. 056107, 2018.

[11] “Summit User Guide,” https://docs.olcf.ornl.gov/systems/summit user
guide.html, accessed: 2022-07-31.
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