
WRENCH: A Framework for Simulating
Workflow Management Systems

Henri Casanova∗, Suraj Pandey∗, James Oeth§, Ryan Tanaka∗, Frédéric Suter‡, Rafael Ferreira da Silva§
∗Information and Computer Sciences, University of Hawaii, Honolulu, HI, USA

§Information Sciences Institute, University of Southern California, Marina Del Rey, CA, USA
‡IN2P3 Computing Center, CNRS, Villeurbanne, France

{henric,surajp,ryanyt}@hawaii.edu, {rafsilva,oeth}@isi.edu, frederic.suter@cc.in2p3.fr

Abstract—Scientific workflows are used routinely in numerous
scientific domains, and Workflow Management Systems (WMSs)
have been developed to orchestrate and optimize workflow
executions on distributed platforms. WMSs are complex software
systems that interact with complex software infrastructures. Most
WMS research and development activities rely on empirical
experiments conducted with full-fledged software stacks on actual
hardware platforms. Such experiments, however, are limited
to hardware and software infrastructures at hand and can be
labor- and/or time-intensive. As a result, relying solely on real-
world experiments impedes WMS research and development. An
alternative is to conduct experiments in simulation.

In this work we present WRENCH, a WMS simulation
framework, whose objectives are (i) accurate and scalable simula-
tions; and (ii) easy simulation software development. WRENCH
achieves its first objective by building on the SimGrid framework.
While SimGrid is recognized for the accuracy and scalability
of its simulation models, it only provides low-level simulation
abstractions and thus large software development efforts are
required when implementing simulators of complex systems.
WRENCH thus achieves its second objective by providing high-
level and directly re-usable simulation abstractions on top of
SimGrid. After describing and giving rationales for WRENCH’s
software architecture and APIs, we present a case study in
which we apply WRENCH to simulate the Pegasus production
WMS. We report on ease of implementation, simulation accuracy,
and simulation scalability so as to determine to which extent
WRENCH achieves its two above objectives. We also draw
both qualitative and quantitative comparisons with a previously
proposed workflow simulator.

Index Terms—Scientific Workflows, Workflow Management
Systems, Simulation, Distributed Computing

I. INTRODUCTION

Scientific workflows have become mainstream in support
of research and development activities in numerous scientific
domains [1]. Consequently, several Workflow Management
Systems (WMSs) have been developed [2]–[7] that allow
scientists to execute workflows on distributed platforms that
can accommodate executions at various scales. WMSs handle
the logistics of workflow executions and make decisions re-
garding resource selection, data management, and computation
scheduling, the goal being to optimize some performance
metric (e.g., latency [8], [9], throughput [10], [11], jitter [12],
reliability [13]–[15], power consumption [16], [17]). WMSs
are complex software systems that interact with complex
software infrastructures and can thus employ a wide range
of designs and algorithms.

In spite of active WMS development and use in production,
which has entailed solving engineering challenges, fundamen-
tal questions remain unanswered in terms of system designs
and algorithms. Although there are theoretical underpinnings
for most of these questions, theoretical results often make
assumptions that do not hold with production hardware and
software infrastructures. Further, the specifics of the design
of a WMS can impose particular constraints on what solu-
tions can be implemented effectively, and these constraints
are typically not considered in available theoretical results.
Consequently, current research that aims at improving and
evolving the state of the art, although sometimes informed by
theory, is mostly done via “real-world” experiments: designs
and algorithms are implemented, evaluated, and selected based
on experiments conducted for a particular WMS implemen-
tation with particular workflow configurations on particular
platforms. As a corollary, from the WMS user’s perspective,
quantifying accurately how a WMS would perform for a
particular workflow configuration on a particular platform
entails actually executing that workflow on that platform.

Unfortunately, real-world experiments have limited scope,
which impedes WMS research and development. This is
because they are confined to application and platform con-
figurations available at hand, and thus cover only a small
subset of the relevant scenarios that may be encountered
in practice. Furthermore, exclusively relying on real-world
experiments makes it difficult or even impossible to investigate
hypothetical scenarios (e.g., “What if the network had a
different topology?”, “What if there were 10 times more
compute nodes but they had half as many cores?”). Real-
world experiments, especially when large-scale, are often not
fully reproducible due to shared networks and compute re-
sources, and due to transient or idiosyncratic behaviors (main-
tenance schedules, software upgrades, and particular software
(mis)configurations). Running real-world experiments is also
time-consuming, thus possibly making it difficult to obtain
statistically significant numbers of experimental results. Real-
world experiments are driven by WMS implementations that
often impose constraints on workflow executions. Further-
more, WMSs are typically not monolithic but instead reuse
CyberInfrastructure (CI) components that impose their own
overheads and constraints on workflow execution. Exploring
what lies beyond these constraints via real-world executions,

e.g., for research and development purposes, typically entails
unacceptable software (re-)engineering costs. Finally, running
real-world experiments can also be labor-intensive. This is due
to the need to install and execute many full-featured software
stacks, including actual scientific workflow implementations,
which is often not deemed worthwhile for “just testing out”
ideas.

An alternative to conducting WMS research via real-world
experiments is to use simulation, i.e., implement a software
artifact that models the functional and performance behaviors
of software and hardware stacks of interest. Simulation is
used in many computer science domains and can address the
limitations of real-world experiments outlined above. Several
simulation frameworks have been developed that target the
parallel and distributed computing domain [18]–[34]. Some
simulation frameworks have also been developed specifically
for the scientific workflow domain [11], [35]–[40].

We claim that advances in simulation capabilities in the field
have made it possible to simulate WMSs that execute large
workflows on large-scale platforms accessible via diverse CI
services in a way that is accurate (via validated simulation
models), scalable (fast execution and low memory footprint),
and expressive (ability to describe arbitrary platforms, complex
WMSs, and complex software infrastructure). In this work,
we build on the existing open-source SimGrid simulation
framework [33], [41], which has been one of the drivers of
the above advances and whose simulation models have been
extensively validated [42]–[46], to develop a WMS simulation
framework called WRENCH [47]. More specifically, this work
makes the following contributions:

1) We justify the need for WRENCH and explain how it
improves on the state of the art.

2) We describe the high-level simulation abstractions pro-
vided by WRENCH that (i) make it straightforward to
implement full-fledged simulated versions of complex
WMS systems; and (ii) make it possible to instantiate
simulation scenarios with only few lines of code.

3) Via a case study with the Pegasus [2] production WMS,
we evaluate the ease-of-use, accuracy, and scalability of
WRENCH, and compare it with a previously proposed
simulator, WorkflowSim [35].

This paper is organized as follows. Section II discusses
related work. Section III outlines the design of WRENCH and
describes how its APIs are used to implement simulators. Sec-
tion IV presents our case study. Finally, Section V concludes
with a brief summary of results and a discussion of future
research directions.

II. RELATED WORK

Many simulation frameworks have been developed for par-
allel and distributed computing research and development.
They span domains such as HPC [18]–[21], Grid [22]–
[24], Cloud [25]–[27], Peer-to-peer [28], [29], or Volunteer
Computing [30]–[32]. Some frameworks have striven to be
applicable across some or all or the above domains [33],
[34]. Two conflicting concerns are accuracy (the ability to

capture the behavior of a real-world system with as little
bias as possible) and scalability (the ability to simulate large
systems with as few CPU cycles and bytes of RAM as
possible). The aforementioned simulation frameworks achieve
different compromises between these two concerns by using
various simulation models. At one extreme are discrete event
models that simulate the “microscopic” behavior of hardware/-
software systems (e.g., by relying on packet-level network
simulation for communication [48], on cycle-accurate CPU
simulation [49] or emulation for computation). In this case,
the scalability challenge can be handled by using Parallel
Discrete Event Simulation [50], i.e., the simulation itself is
a parallel application that requires a parallel platform whose
scale is at least commensurate to that of the simulated plat-
form. At the other extreme are analytical models that capture
“macroscopic” behaviors (e.g., transfer times as data sizes
divided by bottleneck bandwidths, compute times as numbers
of operations divided by compute speeds). While these models
are typically more scalable, they must be developed with care
so that they are accurate. In previous work, it has been shown
that several available simulation frameworks use macroscopic
models that can exhibit high inaccuracy [43].

A number of simulators have been developed that target
scientific workflows. Some of them are stand-alone simula-
tors [11], [35]–[37]. Others are integrated with a particular
WMS to promote more faithful simulation and code re-
use [38], [39] or to execute simulations at runtime to guide
on-line scheduling decisions made by the WMS [40].

The authors in [39] conduct a critical analysis of the state-
of-the-art of workflow simulators. They observe that many
of these simulators do not capture the details of underlying
infrastructures and/or use naive simulation models. This is the
case with custom simulators such as that in [36], [37], [40].
But it is also the case with workflow simulators built on top of
generic simulation frameworks that provide convenient user-
level abstractions but fail to model the details of the underlying
infrastructure, e.g., the simulators in [11], [35], [38], which
build on the CloudSim [25] or GroudSim [24] frameworks.
These frameworks have been shown to lack in their network
modeling capabilities [43]. As a result, some authors readily
recognize that their simulators are likely only valid when
network effects play a small role in workflow executions (i.e.,
when workflows are not data-intensive).

To overcome the above limitations, in [39] the authors have
improved the network model in GroudSim and also use a
separate simulator, DISSECT-CF [27], for simulating cloud
infrastructures accurately. Both [39] and [27] acknowledge
that the popular SimGrid [33], [41] simulation framework
offers compelling capabilities, both in terms of scalability
and simulation accuracy. But one of their reasons for not
considering SimGrid is that, because it is low-level, using
it to implement a simulator of a complex system, such as
a WMS and the CI services it uses, would be too labor-
intensive. In this work, we address this issue by developing
a simulation framework that provides convenient, reusable,
high-level abstractions but that builds on SimGrid so as to

benefit from its scalable and accurate simulation models.
Furthermore, unlike [38], [39], we do not focus on integration
with any specific WMS. The argument in [39] is that stand-
alone simulators, such as that in [35], are disconnected from
real-world WMSs because they abstract away much of the
complexity of these systems. Instead, our proposed framework
does capture low-level system details (and simulates them well
thanks to SimGrid), but provides high-level enough abstrac-
tions to implement faithful simulations of complex WMSs
with minimum effort, which we demonstrate via a case study
with the Pegasus WMS [2].

Also related to this work is previous research that has not
focused on providing simulators or simulation frameworks per
se, but instead on WMS simulation methodology. In particular,
several authors have investigated methods for injecting realistic
stochastic noise in simulated WMS executions [35], [51].
These techniques can be adopted by most of the aforemen-
tioned frameworks, including the one proposed in this work.

III. WRENCH
A. Objective and Intended Users

WRENCH’s objective is to make it possible to study WMSs
in simulation in a way that is accurate (faithful modeling of
real-world executions), scalable (low computation and memory
footprints on a single computer), and expressive (ability to
simulate arbitrary WMS, workflow, and platform scenarios
with minimal software engineering effort). WRENCH is not
a simulator but a simulation framework that is distributed as
a C++ library. It provides high-level reusable abstractions for
developing simulated WMS implementations and simulators
for the execution of these implementations. There are two
categories of WRENCH users:

1. Users who implement simulated WMSs – These users
are engaged in WMS research and development activities
and need an “in simulation” version of their current or
intended WMS. Their goals typically include evaluating
how their WMS behaves over hypothetical experimental
scenarios and comparing competing algorithm and system
design options. For these users, WRENCH provides the
WRENCH Developer API (described in Section III-D)
that eases WMS development by removing the typical
difficulties involved when developing, either in real-world
or in simulation mode, a system comprised of distributed
components that interact both synchronously and asyn-
chronously. To this end, WRENCH makes it possible
to implement a WMS as a single thread of control that
interacts with simulated CI services via high-level APIs
and must react to a small set of asynchronous events.

2. Users who execute simulated WMSs – These users sim-
ulate how given WMSs behave for particular workflows
on particular platforms. Their goals include comparing
different WMSs, determining how a given WMS would
behave for various workflow configurations, comparing
different platform and resource provisioning options, de-
termining performance bottlenecks, engaging in peda-
gogic activities centered on distributed computing and

Fig. 1: The four layers in the WRENCH architecture from bot-
tom to top: simulation core, simulated core services, simulated
WMS implementations, and simulators.

workflow issues, etc. These users can develop simulators
via the WRENCH User API (described in Section III-E),
which makes it possible to build a full-fledged simulator
with only a few lines of code.

Users in the first category above often also belong to
the second category. That is, after implementing a simulated
WMS these users typically instantiate simulators for several
experimental scenarios to evaluate their WMS.

B. Software Architecture Overview

Figure 1 depicts WRENCH’s software architecture. At the
bottom layer is the Simulation Core, which simulates low-level
software and hardware stacks using the simulation abstractions
and models provided by SimGrid (see Section III-C). The next
layer implements simulated CI services that are commonly
found in current distributed platforms and used by production
WMSs. At the time of this writing, WRENCH provides ser-
vices in 4 categories: compute services that provide access to
compute resources to execute workflow tasks; storage services
that provide access to storage resources for storing workflow
data; network monitoring services that can be queried to
determine network distances; and data registry services that
can be used to track the location of (replicas of) workflow data.
Each category includes multiple service implementations, so
as to capture specifics of currently available CI services used in
production. For instance, in its current version WRENCH pro-
vides a “batch-scheduled cluster” compute service, a a “cloud”
compute service, and a “bare-metal” compute service. The
above layer in the software architecture consists of simulated

WMS, that interact with CI services using the WRENCH De-
veloper API (see Section III-D). These WMS implementations,
which can simulate production WMSs or WMS research pro-
totypes, are not included as part of the WRENCH distribution,
but implemented as stand-alone projects. One such project is
the simulated Pegasus implementation for our case study in
Section IV. Finally, the top layer consists of simulators that
configure and instantiate particular CI services and particular
WMSs on a given simulated hardware platform, that launch
the simulation, and that analyze the simulation outcome. These
simulators use the WRENCH User API (see Section III-E).
Here again, these simulators are not part of WRENCH, but
implemented as stand-alone projects.

C. Simulation Core

WRENCH’s simulation core is implemented using Sim-
Grid’s S4U API, which provides all necessary abstractions
and models to simulate computation, I/O, and communication
activities on arbitrary hardware platform configurations. These
platform configurations are defined by XML files that specify
network topologies and endpoints, compute resources, and
storage resources [52].

At its most fundamental level, SimGrid provides a Con-
current Sequential Processes (CSP) model: a simulation con-
sists of sequential threads of control that consume hardware
resources. These threads of control can implement arbitrary
code, exchange messages via a simulated network, can perform
computation on simulated (multicore) hosts, and can perform
I/O on simulated storage devices. In addition, SimGrid pro-
vides a virtual machine abstraction that includes a migration
feature. Therefore, SimGrid provides all the base abstractions
necessary to implement the classes of distributed systems that
are relevant to scientific workflow executions. However, these
abstractions are low-level and a common criticism of SimGrid
is that implementing a simulation of a complex system requires
a large software engineering effort. A WMS executing a
workflow using several CI services is a complex system, and
WRENCH builds on top of SimGrid to provide high-level
abstractions so that implementing this complex system is not
labor-intensive.

We have selected SimGrid for WRENCH for the following
reasons. SimGrid has been used successfully in many dis-
tributed computing domains (cluster, peer-to-peer, grid, cloud,
volunteer computing, etc.), and thus can be used to simulate
WMSs that execute over a wide range of platforms. SimGrid
is open source and freely available, has been stable for many
years, is actively developed, has a sizable user community,
and has provided simulation results for over 350 research
publications since its inception. SimGrid has also been the
object of many invalidation and validation studies [42]–[46],
and its simulation models have been shown to provide com-
pelling advantages over other simulation frameworks in terms
of both accuracy and scalability [33]. Finally, most SimGrid
simulations can be executed in minutes on a standard laptop
computer, making it possible to perform large numbers of
simulations quickly with minimal compute resource expenses.

Algorithm 1 Blueprint for a WMS execution

1: procedure MAIN(workflow)
2: Obtain list of available services
3: Gather static information about the services
4: while workflow execution has not completed/failed do
5: Gather dynamic service/resource information
6: Submit pilot jobs if needed
7: Make data/computation scheduling decisions
8: Interact with services to enact decisions
9: Wait for and react to the next event

10: end while
11: return
12: end procedure

To the best of our knowledge, among comparable available
simulation frameworks (as reviewed in Section II), SimGrid
is the only one to offer all the above desirable characteristics.

D. WRENCH Developer API

With the Developer API, a WMS is implemented as a single
thread of control that executes according to the pseudo-code
blueprint shown in Algorithm 1. Given a workflow to execute,
a WMS first gathers information about all the CI services
it can use to execute the workflow (lines 2-3). Examples
of such information include the number of compute nodes
provided by a compute service, the number of cores per node
and the speed of these cores, the amount of storage space
available in a storage service, the list of hosts monitored by a
network monitoring service, etc. Then, the WMS iterates until
the workflow execution is complete or has failed (line 4). At
each iteration it gathers dynamic information about available
services and resources if needed (line 5). Example of such
information include currently available capacities at compute
or storage services, current network distances between pairs
of hosts, etc. Then, if desired, the WMS can submit pilot
jobs [53] to compute services that support them, if any (line
6). Based on resource information and on the current state of
the workflow, the WMS can then make whatever scheduling
decisions it sees fit (line 7). It then enacts these decisions
by interacting with appropriate services. For instance, it could
decide to submit a “job” to a compute service to execute a
ready task on some number of cores at some compute service
and copy all produced files to some storage service, or it could
decide to just copy a file between storage services and then
update a data location service to keep track of the location of
this new file replica. It is the responsibility of the developer
to implement all decision-making algorithms employed by the
WMS. At the end of the iteration, the WMS simply waits for
a workflow execution event to which it can react if need be.
Most common events are job completions/failures and data
transfer completions/failures.

The WRENCH Developer API provides a rich set of meth-
ods to process analyze the workflow and to interact with CI
services to execute the workflow. These methods were de-
signed based on current and envisioned capabilities of current
state-of-the-art WMSs. We refer the reader to the WRENCH
Web site [47] for more information on how to use this API

and for the full API documentation. The key objective of this
API is to make it straightforward to implement a complex
system, namely a full-fledged WMS that interact with diverse
CI services. We achieve this objective by providing simple
solutions and abstractions to handle well-known challenges
when implementing a complex distributed system (whether in
the real world or in simulation), as explained hereafter.

SimGrid provides simple point-to-point communication be-
tween threads of control via a mailbox abstraction. One of
the recognized strengths of SimGrid is that it employs highly
accurate and yet scalable network simulation models. How-
ever, unlike some of its competitors, it does not provide any
higher-level simulation abstractions meaning that distributed
systems must be implemented essentially from scratch, with
many message-based interactions. All message-based commu-
nication is abstracted away by WRENCH, and although the
simulated CI services exchange many messages with the WMS
and among themselves, the WRENCH Developer API only
exposes higher-level interaction with services (“run this job”,
“move this data”) and only requires that the WMS handle a few
events. The WMS developer thus completely avoids the need
to send and receive (and thus orchestrate) network messages.

Another challenge when developing a system like a WMS
is the need to handle asynchronous interactions. While some
service interactions can be synchronous (e.g., “are you up?”,
“tell me your current load”), most need to be asynchronous
so that the WMS retains control. The typical solution is to
maintain sets of request handles and/or to use multiple threads
of control. To free the WMS developer from these responsi-
bilities, WRENCH provides already implemented “managers”
that can be used out-of-the-box to take care of asynchronicity.
A WMS can instantiate such managers, which are independent
threads of control. Each manager transparently interacts with
CI services, maintains a database of pending requests, pro-
vides a simple API to check on the status of these requests,
and automatically generates workflow execution events. For
instance, a WMS can instantiate a “job manager” through
which it will create and submit jobs to compute services. It
can at any time check on the status of a job, and the job
manager interacts directly (and asynchronously) with compute
services so as to generate “job done” or “job failed” events
to which the WMS can react. In our experience developing
simulators from scratch using SimGrid, the implementation of
asynchronous interactions with simulated processes is a non-
trivial development effort, both in terms of amount of code to
write and difficulty to write this code correctly. We posit that
this is one of the reasons why some users have preferred using
simulation frameworks that provide higher-level abstractions
than SimGrid but offer less attractive accuracy and/or scalabil-
ity features. WRENCH provides such higher-level abstractions
to the WMS developers, and as a result implementing a WMS
with WRENCH can be straightforward.

Finally, one of the challenges when developing a WMS
is failure handling. It is expected that compute, storage, and
network resources, as well as the CI services that use them,
can fail through the execution of the WMS. SimGrid has the

capability to simulate arbitrary failures via availability traces.
Furthermore, failures can occur due to the WMS implemen-
tation itself, e.g., if it fails to check that the operations it
attempts are actually valid, if concurrent operations initiated
by the WMS work at cross purposes. WRENCH abstracts
away all these failures as C++ exceptions that can be caught
by the WMS implementation, or caught by a manager and
passed to the WMS as workflow execution events. Regardless,
each failure exposes a failure cause, which encodes a detailed
description of the failure. For instance, after initiating a file
copy from a storage service to another storage service, a
“file copy failed” event sent to the WMS would include a
failure cause that could specify that when trying to copy file
x from storage service y to storage service z, storage service
z did not have sufficient storage space. Other example failure
causes could be that a network error occurred when storage
service y attempted to receive a message from storage service
z, or that service z was down. All CI services implemented
in WRENCH simulate well-defined failure behaviors, and
failure handling capabilities afforded to simulated WMSs can
actually allow more sophisticated failure tolerance strategies
than currently done or possible in real-world implementations.
But more importantly, the amount of code that needs to be
written for failure handling in a simulated WMS is minimal.

Given the above, WRENCH makes it possible to implement
a simulated WMS with very little code and effort. The example
WMS implementation provided with the WRENCH distribu-
tion, which is simple but functional, is under 200 lines of C++
(once comments have been removed). See more discussion of
the effort needed to implement a WMS with WRENCH in the
context of our Pegasus case study (Section IV).

E. WRENCH User API

With the User API one can quickly build a simulator, which
typically follows these steps:

1. Instantiate a platform based on a SimGrid XML platform
description file;

2. Create one or more workflows;
3. Instantiate services on the platform;
4. Instantiate one or more WMSs telling each what services

are at its disposal and what workflow it should execute
starting at what time;

5. Launch the simulation; and
6. Process the simulation outcome.
The above steps can be implemented with only a few lines of

C++. An example WRENCH simulator is shown in Figure 2,
which uses a WMS implementation (called SomeWMS) that
has already been developed using the WRENCH Developer
API (see previous section). After initializing the simulation
(lines 5-6), the simulator instantiates a platform (line 8) and
a workflow (line 10-11). A workflow is defined as a set
of computation tasks and data files, with control and data
dependencies between tasks. Each task can also have a priority,
which can then be taken into account by a WMS for scheduling
purposes. Although the workflow can be defined purely pro-
grammatically, in this example the workflow is imported from

1 #include <math.h>
2 #include <wrench.h>
3 int main(int argc, char **argv) {
4 // Declare and initialize a simulation
5 wrench::Simulation simulation;
6 simulation.init(&argc, argv);
7 // Instantiate a platform
8 simulation.instantiatePlatform("my_platform.xml");
9 // Instantiate a workflow

10 wrench::Workflow workflow;
11 workflow.loadFromDAX("my_workflow.dax", "1000Gf");
12 // Instantiate a storage service
13 auto storage_service = simulation.add(
14 new wrench::SimpleStorageService("storage_host", pow(2,50)));
15 // Instantiate a sompute service (a batch−scheduled 4−node cluster that uses the
16 // EASY backfilling algorithm and is subject to a background load)
17 auto batch_service = simulation.add(
18 new wrench::BatchService("batch_login", {"node1", "node2", "node3", "node4"}, pow(2,40),
19 {{wrench::BatchServiceProperty::SIMULATED_WORKLOAD_TRACE_FILE, "load.swf"},
20 {wrench::BatchServiceProperty::BATCH_SCHEDULING_ALGORITHM, "easy_bf"}}));
21 // Instantiate a compute service (a 4−host cloud platform that does not support pilot jobs)
22 auto cloud_service = simulation.add(
23 new wrench::CloudService("cloud_gateway", {"host1", "host2", "host3", "host4"}, pow(2,42),
24 {{wrench::CloudServiceProperty::SUPPORTS_PILOT_JOBS, "false"}}));
25 // Instantiate a data registry service
26 auto data_registry_service = simulation.add(new wrench::FileRegistryService("my_desktop"));
27 // Instantiate a network monitoring service
28 auto network_monitoring_service =
29 simulation.add(new wrench::NetworkProximityService(
30 "my_desktop", {"my_desktop", "batch_login", "cloud_gateway"},
31 {{wrench::NetworkProximityServiceProperty::NETWORK_PROXIMITY_SERVICE_TYPE,
32 "vivaldi"}});
33 // Stage a workflow input file at the storage service
34 simulation.stageFile(workflow.getFileByID("input_file"), storage_service);
35 // Instantiate a WMS...
36 auto wms = simulation.add(
37 new wrench::SomeWMS({batch_service, cloud_service}, {storage_service},

{network_monitoring_service}, {data_registry_service}, "my_desktop"));
38 // ... and assign the workflow to it, to be executed one hour in
39 wms->addWorkflow(&workflow, 3600);
40 // Launch the simulation
41 simulation.launch();
42 // Retrieve task completion events
43 auto trace = simulation.getOutput().getTrace<wrench::SimulationTimestampTaskCompletion>();
44 // Determine the completion time of the last task that completed
45 double completion_time = trace[trace.size()-1]->getContent()->getDate();
46 }

Fig. 2: Example fully functional WRENCH simulator. Try-catch clauses are omitted.

a workflow description file in the DAX format [54]. At line
13 the simulator creates a storage service with 1PiB capacity
accessible on host storage_host. This and other hostnames
are specified in the XML platform description file. At line 17
the simulator creates a compute service that corresponds to a
4-node batch-scheduled cluster. The physical characteristics of
the compute nodes (node[1-4]) are specified in the platform
description file. This compute service has a 1TiB scratch
storage space. Its behavior is customized by passing a couple
of property-value pairs to its constructor. It will be subject to
a background load as defined by a trace in the standard SWF
format [55], and its batch queue will be managed using the
EASY Backfilling scheduling algorithm [56]. The simulator
then creates a second compute service (line 22), which is a
4-host cloud service, customized so that it does not support
pilot jobs. Two helper services are instantiated, a data registry
service so that the WMS can keep track of file locations

(line 26) and a network monitoring service that uses the
Vivaldi algorithm [57] to measure network distances between
the two hosts from which the compute services are accessed
(batch_login and cloud_gateway) and the my_host host,
which is the host that runs these helper services and the
WMS (line 28). At line 34, the simulator specifies that the
workflow data file input_file is initially available at the
storage service. It then instantiates the WMS and passes to it
all available services (line 36), and assigns the workflow to it
(line 39). The crucial call is at line 41, where the simulation
is launched and the simulator hands off control to WRENCH.
When this call returns the workflow has either completed
or failed. Assuming it has completed, the simulator then
retrieves the ordered set of task completion events (line 43)
and performs some (in this example, trivial) mining of these
events (line 45).

For brevity, the example in Figure 2 omits try/catch

clauses. Also, note that although the simulator uses the new

operator to instantiate WRENCH objects, the simulation object
takes ownership of these objects (using unique or shared point-
ers), so that there is no memory deallocation onus placed on
the user. This example showcases only the most fundamental
features of the WRENCH User API, and we refer the reader
to the WRENCH Web site [47] for more detailed information
on how to use this API and for the full API documentation.
In the future this API will come with Python binding so that
users can implement simulators in Python.

IV. CASE STUDY: SIMULATING A PRODUCTION WMS

In this section, we present a WRENCH-based simulator
of a state-of-the-art WMS, Pegasus [2], as a case study for
evaluation and validation purposes.

Pegasus is being used in production to execute workflows
for dozens of high-profile applications in a wide range of
scientific domains [2]. Pegasus provides the necessary ab-
stractions for scientists to create workflows and allows for
transparent execution of these workflows on a range of com-
pute platforms including clusters, clouds, and national cyberin-
frastructures. During execution, Pegasus translates an abstract
resource-independent workflow into an executable workflow,
determining the specific executables, data, and computational
resources required for the execution. Workflow execution with
Pegasus includes data management, monitoring, and failure
handling, and is managed by HTCondor DAGMan [58]. In-
dividual workflow tasks are managed by a workload man-
agement framework, HTCondor [59], which supervises task
executions on local and remote resources.

A. Implementing Pegasus with WRENCH

Since Pegasus relies on HTCondor, first we have imple-
mented the HTCondor services as simulated core CI services,
which together form a new Compute Service that exposes the
WRENCH Developer API. This makes HTCondor available
to any WMS implementation that is to be simulated using
WRENCH, and will be included in the next WRENCH release
as part of the growing set of simulated core CI services
provided by WRENCH.

HTCondor is composed of six main service daemons
(startd, starter, schedd, shadow, negotiator, and
collector). In addition, each host on which one or more of
these daemons is spawned must also run a master daemon,
which controls the execution of all other daemons (including
initialization and completion). The bottom part of Figure 3
depicts the components of our simulated HTCondor imple-
mentation, where daemons are shown in red-bordered boxes.
In our simulator we implement the 3 fundamental HTCon-
dor services, implemented as particular sets of daemons, as
depicted in the bottom part of Figure 3 in borderless white
boxes. The Job Execution Service consists of a startd

daemon, which adds the host on which it is running to the
HTCondor pool, and of a starter daemon, which manages
task executions on this host. The Central Manager Service
consists of a collector daemon, which collects information

Job Submission Service

WRENCH Pegasus Simulator

pegasus-run

Pe
ga

su
s

D
A

G
M

an
H

TC
on

do
r

master schedd shadow

Central Manager Service

configuration

scheduler
DAGMan monitor

master negotiator collector

Job Execution Service

master startd starter

Fig. 3: Overview of the WRENCH Pegasus simulation com-
ponents, including components for DAGMan and HTCondor
frameworks. Red boxes denote Pegasus services developed
with WRENCH’s Developer API, and white boxes denote
WRENCH reused components.

about all other daemons, and of a negotiator daemon, which
performs task/resource matchmaking. The Job Submission
Service consists of a schedd daemon, which maintains a
queue of tasks, and of several instances of a shadow daemon,
each of which corresponds to a task submitted to the Condor
pool for execution.

Given the simulated HTCondor implementation above, we
then implemented the simulated Pegasus WMS, including the
DAGMan workflow engine, using the WRENCH Developer
API. This implementation instantiates all services and parses
the workflow description file, the platform description file, and
a Pegasus-specific configuration file. DAGMan orchestrates the
workflow execution (e.g., a task is marked as ready for execu-
tion once all its parent tasks have successfully completed), and
monitors the status of tasks submitted to the HTCondor pool
using a pull model, i.e., task status is fetched from the pool
at regular time intervals. The top part of Figure 3 depicts the
components of our simulated Pegasus implementation (each
shown in a red box).

By leveraging WRENCH’s high-level simulation abstrac-
tions, implementing HTCondor as a reusable core WRENCH
service using the Developer API required only 613 lines of
code. Similarly, implementing a simulated version of Pegasus,
including DAGMan, was done with only 666 lines of code
(127 of which are merely parsing simulation configuration
files). These numbers include both header and source files,
but exclude comments. We argue that the above corresponds
to minor simulation software development efforts when con-
sidering the complexity of the system being simulated.

Service implementations in WRENCH are all parameteri-
zable. For instance, as services use message-based commu-
nications it is possible to specify all message payloads in
bytes (e.g., for control messages). Other parameters encom-
pass various overheads, either in seconds or in computation
volumes (e.g., task startup overhead on a compute service).
In WRENCH, all service implementations come with default

Experimental Scenario Avg. Makespan Task Submissions Tasks completions
Workflow Platform Error (%) p-value distance p-value distance

1000Genome ExoGENI 1.10 ±0.28 0.06 ±0.01 0.21 ±0.04 0.72 ±0.06 0.12 ±0.01
Montage-1.5 AWS-t2.xlarge 4.25 ±1.16 0.08 ±0.01 0.16 ±0.03 0.12 ±0.05 0.21 ±0.02
Montage-2.0 AWS-m5.xlarge 3.37 ±0.46 0.11 ±0.03 0.06 ±0.02 0.10 ±0.01 0.11 ±0.01

TABLE I: Average simulated makespan error (%), and p-values and Kolmogorov-Smirnov (KS) distances for task submission
and completion dates, computed for 5 runs of each of our 3 experimental scenarios.

values for all these parameters, but it is possible to pick
custom values upon service instantiation. The process of
picking parameter values so as to match a specific real-world
system is referred to as simulation calibration. We calibrated
our simulator by measuring delays observed in event traces
of real-world executions for workflows on hardware/software
infrastructures (see Section IV-B).

The simulator code, details on the simulation calibration
procedure, and experimental scenarios used in the rest of this
section are all publicly available online [60].

B. Experimental Scenarios

We consider experimental scenarios defined by particular
workflow instances to be executed on particular platforms. Due
to the lack of publicly available detailed workflow execution
traces (i.e., execution logs that include data sizes for all files,
all execution delays, etc.), we have performed real workflow
executions with Pegasus and collected raw, time-stamped event
traces from these executions. These traces form the ground
truth to which we can compare simulated executions. We
consider these workflow applications:

• 1000Genome [61]: A data-intensive workflow that iden-
tifies mutational overlaps using data from the 1000
genomes project in order to provide a null distribution
for rigorous statistical evaluation of potential disease-
related mutations. We consider a 1000Genome instance
that comprises 71 tasks.

• Montage [2]: A compute-intensive astronomy workflow
for generating custom mosaics of the sky. For this ex-
periment, we ran Montage for processing 1.5 and 2.0
square degrees mosaic 2MASS. We thus refer to each
configuration as Montage-1.5 and Montage-2.0, respec-
tively. Montage-1.5, resp. Montage-2.0, comprises 573,
resp. 1,240, tasks.

We use these platforms, deploying on each a submit node
(which runs Pegasus, DAGMan, and HTCondor’s job submis-
sion and central manager services), four worker nodes (4 cores
per node / shared file system), and a data node in the WAN:

• ExoGENI: A widely distributed networked infrastructure-
as-a-service testbed representative of a “bare metal” plat-
form. Each worker node is a 4-core 2.0GHz processor
with 12GiB of RAM. The bandwidth between the data
node and the submit node was ∼0.40 Gbps, and the
bandwidth between the submit and worker nodes was
∼1.00 Gbps.

• AWS: Amazon’s cloud platform, on which we use two
types of virtual machine instances: t2.xlarge and

m5.xlarge. The bandwidth between the data node and
the submit node was ∼0.44 Gbps, and the bandwidth
between the submit and worker nodes on these instances
were ∼0.74 Gbps and ∼1.24 Gbps, respectively.

C. Simulation Accuracy

To evaluate the accuracy of our simulator, we consider 3
particular experimental scenarios: 1000Genome on ExoGENI,
Montage-1.5 on AWS-t2.xlarge, and Montage-2.0 on AWS-
m5.xlarge. Each execution is repeated 5 times and the overall
workflow execution times, or makespans, are recorded.

The third column in Table I shows average relative differ-
ences between actual and simulated makespans. We see that
simulated makespans are close to actual makespans across the
board (average relative error is below 5%). One of the key
advantages of building WRENCH on top of SimGrid is that
WRENCH simulators benefit from the high-accuracy network
models in SimGrid, e.g., these models capture many features
of the TCP protocol. And indeed, when comparing real-world
and simulated executions we observe average relative error
below 3% for data movement operations. The many processes
involved in a workflow execution with Pegasus interact by
exchanging (typically small) control messages. Our simulator
simulates these interactions. For instance, each time an output
file is produced by a task a data registry service is contacted so
that a new entry can be added to its database of file replicas,
which incurs some overhead due to a message exchange. When
comparing real-world to simulated executions we observe
average relative simulation error below 1% for these data
registration overheads.

To draw comparisons with a state-of-the-art simulator,
we repeated the above simulations using WorkflowSim [35].
WorkflowSim does not provide a detailed simulated HTCondor
implementation, does not offer the same simulation calibra-
tion capabilities as WRENCH, and is built on top of the
CloudSim simulation framework [25]. Nevertheless, we have
painstakingly calibrated our WorkflowSim simulator so that
it models the hardware and software infrastructures of our
experimental scenarios as closely as possible. For each of
the 3 experimental scenarios, we find that the relative average
makespan percentage error is 12.09 ±2.84, 26.87 ±6.26, and
13.32 ±1.12, respectively, i.e., from 4x up to 11x larger than
the error values obtained with our WRENCH-based simulator.
The reasons for the discrepancies between WorkflowSim and
real-world results are twofold. First, WorkflowSim uses the
simplistic network models in CloudSim (see discussion in
Section II) and thus suffers from simulation bias w.r.t. data

transfer times. Second, WorkflowSim does not capture all the
relevant details of the system and its execution. By contrast,
implementing a fully detailed simulator with WRENCH can
be done in a few hundred lines of code.

In our experiments we also record the submission and com-
pletion dates of each task, thus obtaining empirical cumulative
density functions (ECDFs) of these times, for both real-world
executions and simulated executions. To further validate the
accuracy of our simulation results we apply Kolmogorov-
Smirnov goodness of fit tests (KS tests) with null hypotheses
(H0) that the real-world and simulation samples are drawn
from the same distributions. The two-sample KS test results in
a miss if the null hypothesis (two-sided alternative hypothesis)
is rejected at 5% significance level (p-value ≤ 0.05). Each
test for which the null hypothesis is not rejected (p-value
> 0.05), indicates that the simulated execution statistically
matches the real-world execution. Table I shows p-value and
KS test distance for both task submission times and task
completion times. The null hypothesis is not rejected, and we
thus conclude that simulated workflow task executions statis-
tically match real-world executions well. These conclusions
are confirmed by visually comparing ECFDs. For instance,
Figure 4 shows real-world and simulated ECDFs for sample
runs of Montage-2.0 on AWS-m5.xlarge, with task submission,
resp. completion, date ECDFs on the left-hand, resp. right-
hand, side. We observe that the simulated ECDFs (“wrench”)
track the real-world ECDFs (“pegasus”) closely. We repeated
these simulations using WorkflowSim, and found that the null
hypothesis is rejected for all 3 simulation scenarios. This is
confirmed visually in Figure 4, where the ECDFs obtained
from the WorkflowSim simulation (“workflowsim”) are far
from the real-world ECDFs.

Although KS tests and ECDFs visual inspections validate
that the WRENCH-simulated ECDFs match the real-world
ECDFs statistically, these results do not distinguish between
individual tasks. In fact, there are some discrepancies between
real-world and simulated schedules. For instance, Figure 5
shows Gantt charts corresponding to the workflow executions
shown in Figure 4, with the real-world execution on the left-
hand side (“pegasus”) and the simulated execution on the
right-hand side (“wrench”). Tasks executions are shown on
the vertical axis, each shown as a line segment along the
horizontal time axis, spanning the time between the task’s
start time and the task’s finish time. Different task types,
i.e., different executables, are shown with different colors. In
this workflow, all tasks of the same type are independent and
have the same priority. We see that the shapes of the yellow
regions, for example, vary between the two executions. These
variations are explained by implementation-dependent behav-
iors of the workflow scheduler. In many instances throughout
workflow execution several ready tasks can be selected for
execution, e.g., sets of independent tasks in the same level
of the workflow. When the number of available compute
resources, n, is smaller than the number of ready tasks, the
scheduler picks n ready tasks for immediate execution. In
most WMSs, these tasks are picked as whatever first n tasks

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Workflow Makespan (s)

F
(S

ub
m

itt
ed

 T
as

ks
)

A

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

Workflow Makespan (s)

F
(C

om
pl

et
ed

 T
as

ks
)

B

pegasus wrench workflowsim

Fig. 4: Empirical cumulative distribution function of task sub-
mit times (left) and task completion times (right) for sample
real-world (“pegasus”) and simulated (“wrench” and “work-
flowsim”) executions of Montage-2.0 on AWS-m5.xlarge.

0 1000 2000 3000

Makespan (s)

Ta
sk

s

pegasusA

0 1000 2000 3000

Makespan (s)

Ta
sk

s

wrenchB

Fig. 5: Task execution Gantt chart for sample real-world (“pe-
gasus”) and simulated (“wrench”) executions of the Montage-
2.0 workflow on the AWS-m5.xlarge platform.

are returned when iterating over data structures in which task
objects are stored. Building a perfectly faithful simulation
of a WMS would thus entail implementing/using the exact
same data structures as that in the actual implementation.
This could be labor intensive or perhaps not even possible
depending on which data structures, languages, and/or libraries
are used in that implementation. In the context of this Pegasus
case study, the production implementation of the DAGMan
scheduler uses a custom priority list implementation to store
ready tasks, while our simulation version of it stores workflow
tasks in a std::map data structure indexed by task string
IDs. Consequently, when the real-world scheduler picks the
first n ready tasks it typically picks different tasks than those
picked by its simulated implementation. This is the cause the
discrepancies seen in Figure 5.

D. Simulation Scalability

Table II shows average simulated makespans and simulation
execution times for our 3 experimental scenarios. Simulations
are executed on a single core of a MacBook Pro 3.5 GHz Intel

Experimental Scenario Avg. Workflow Avg. Simulation
Workflow Platform Makespan (s) Time (s)

1000Genome ExoGENI 761.0 ±7.93 0.3 ±0.01
Montage-1.5 AWS-t2.xlarge 1,784.0 ±137.67 8.3 ±0.09
Montage-2.0 AWS-m5.xlarge 2,911.8 ±48.80 28.1 ±0.52

TABLE II: Simulated workflow makespans and simulation
times averaged over 5 runs of each of our 3 experimental
scenarios.

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

workflow tasks

T
im

e
(s

)

M
em

ory [M
B

]

memory usage

simulation time

workflowsim

wrench

Fig. 6: Average simulation time (in seconds. left vertical axis)
and memory usage (maximum resident set size, right vertical
axis) in MiB vs. workflow size.

Core i7 with 16GiB of RAM. For these scenarios, simulation
times are more than 100x and up to 2500x shorter than real-
world workflow executions. This is because SimGrid simu-
lates computation and communication operations as delays
computed based on computation and communication volumes
using simulation models with low computational complexity.

To evaluate the scalability of our simulator, we use a
workflow generator [62] to generate representative randomized
configurations of the Montage workflow with from 1, 000 up
to 10, 000 tasks. We generate 5 workflow instances for each
number of tasks, and simulate the execution of these generated
workflow instances on 128 cores (AWS-m5.xlarge with 32 4-
core nodes). Figure 6 shows simulation time (left vertical axis)
and maximum resident set size (right vertical axis) vs. the
number of tasks in the workflow. Each sample point is the
average over the 5 workflow instances (error bars are shown
as well). As expected, both simulation time and memory
footprint increase as workflows become larger. The memory
footprint grows linearly with the number of tasks (simply due
to the need to store more task objects). The simulation time
grows faster initially, but then linearly beyond 7,000 tasks. We
conclude that the simulation scales well, making it possible
to simulate very large 10,000-task Montage configurations in
under 40 minutes on a standard laptop computer.

Figure 6 also includes results obtained with WorkflowSim.
We find that WorkflowSim has a larger memory footprint than
our WRENCH-based simulator (by a factor ∼1.48 for 10,000-
task workflows). However, WorkflowSim is faster than our
WRENCH-based simulator (by a factor ∼1.81 for 10,000-
task workflows), with roughly similar trends. The reason why

WorkflowSim is faster is because it simply does not simulate
many aspects of the execution. The downside, as seen in the
previous section, is that its simulation results are inaccurate.

V. CONCLUSION

In this paper we have presented WRENCH, a simulation
framework for building simulators of Workflow Management
Systems. WRENCH implements high-level simulation abstrac-
tions on top of the SimGrid simulation framework, so as
to make it possible to build simulators that are accurate,
that can run scalably on a single computer, and that can
be implemented with minimal software development effort.
Via a case study for the Pegasus production WMS we have
demonstrated that WRENCH achieves these objectives, and
that it favorably compares to a recently proposed workflow
simulator. The main finding is that with WRENCH one can im-
plement an accurate and scalable simulator of a complex real-
world system with a few hundred lines of code. WRENCH is
open source and welcomes contributors. WRENCH is already
being used for several research and education projects, and
Version 1.1 was released in August 2018. We refer the reader
to http://wrench-project.org for software, documentation, and
links to related projects.

A short-term development direction is to use WRENCH
to simulate the execution of current production WMSs (as
was done for Pegasus in Section IV). Although we have
designed WRENCH with knowledge of these WMSs and with
the intent of making their implementations with WRENCH
feasible, we expect that WRENCH APIs and abstractions
will evolve once we set out to realize these implementations.
Another development direction is the implementation of more
CI service abstractions in WRENCH, e.g., a Hadoop Compute
Service, specific distributed cloud Storage Services. From a
research perspective, a future direction is that of automated
simulation calibration. As seen in our Pegasus case study,
even when using validated simulation models, the values of
a number of simulation parameters must be carefully chosen
in order to obtain accurate simulation results. This issue is
not confined to WRENCH, but is faced by all distributed
system simulators. In our case study we have calibrated these
parameters manually by analyzing and comparing simulated
and real-world execution event traces. While, to the best of our
knowledge, this is the typical practice, what is truly needed
is an automated calibration method. Ideally, this method
would process a (small) number of (not too large) real-world
execution traces for “training scenarios”, and compute a valid
and robust set of calibration parameter values. An important
research question will then be to understand to which extent
these automatically computed calibrations can be composed
and extrapolated to scenarios beyond the training scenarios.

Acknowledgments. This work is funded by NSF contracts
#1642369 and #1642335, “SI2-SSE: WRENCH: A Simulation
Workbench for Scientific Worflow Users, Developers, and
Researchers”, and by CNRS under grant #PICS07239. We
thank Martin Quinson, Arnaud Legrand, and Pierre-François
Dutot for their valuable help.

http://wrench-project.org

REFERENCES

[1] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for
e-Science: scientific workflows for grids. Springer Publishing Company,
Incorporated, 2014.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus: a Workflow Management System for Science Automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[3] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong et al., “Askalon: A
development and grid computing environment for scientific workflows,”
in Workflows for e-Science. Springer, 2007, pp. 450–471.

[4] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[5] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher et al.,
“The taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud,” Nucleic acids research,
p. gkt328, 2013.

[6] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock,
“Kepler: an extensible system for design and execution of scientific
workflows,” in Scientific and Statistical Database Management, 2004.
Proceedings. 16th International Conference on. IEEE, 2004, pp. 423–
424.

[7] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in 1st ACM SIGMOD Workshop on Scalable Workflow Execution En-
gines and Technologies. ACM, 2012, p. 1.

[8] N. Vydyanathan, U. V. Catalyurek, T. M. Kurc, P. Sadayappan, and
J. H. Saltz, “Toward optimizing latency under throughput constraints
for application workflows on clusters,” in Euro-Par 2007 Parallel
Processing. Springer, 2007, pp. 173–183.

[9] A. Benoit, V. Rehn-Sonigo, and Y. Robert, “Optimizing latency and
reliability of pipeline workflow applications,” in Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on.
IEEE, 2008, pp. 1–10.

[10] Y. Gu and Q. Wu, “Maximizing workflow throughput for streaming
applications in distributed environments,” in Computer Communications
and Networks (ICCCN), 2010 Proceedings of 19th International Con-
ference on. IEEE, 2010, pp. 1–6.

[11] M. Malawski, G. Juve, W. Deelman, and J. Nabrzyski, “Algorithms for
cost- and deadline-constrained provisioning for scientific workflow en-
sembles in IaaS clouds,” Future Generation Computer Systems, vol. 48,
pp. 1–18, 2015.

[12] J. Chen and Y. Yang, “Temporal dependency-based checkpoint selection
for dynamic verification of temporal constraints in scientific workflow
systems,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, no. 3, p. 9, 2011.

[13] G. Kandaswamy, A. Mandal, D. Reed et al., “Fault tolerance and
recovery of scientific workflows on computational grids,” in Cluster
Computing and the Grid, 2008. CCGRID’08. 8th IEEE International
Symposium on. IEEE, 2008, pp. 777–782.

[14] R. Ferreira da Silva, T. Glatard, and F. Desprez, “Self-healing of
workflow activity incidents on distributed computing infrastructures,”
Future Generation Computer Systems, vol. 29, no. 8, pp. 2284–2294,
2013.

[15] W. Chen, R. Ferreira da Silva, E. Deelman, and T. Fahringer, “Dynamic
and fault-tolerant clustering for scientific workflows,” IEEE Transactions
on Cloud Computing, vol. 4, no. 1, pp. 49–62, 2016.

[16] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer, “A
multi-objective approach for workflow scheduling in heterogeneous
environments,” in Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012). IEEE
Computer Society, 2012, pp. 300–309.

[17] I. Pietri, M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, and R. Sakel-
lariou, “Energy-constrained provisioning for scientific workflow ensem-
bles,” in Cloud and Green Computing (CGC), 2013 Third International
Conference on. IEEE, 2013, pp. 34–41.

[18] M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely, “PSINS: An
Open Source Event Tracer and Execution Simulator for MPI Applica-
tions,” in Proc. of the 15th Intl. Euro-Par Conf. on Parallel Processing,
ser. LNCS, no. 5704. Springer, Aug. 2009, pp. 135–148.

[19] T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - Simulating
Large-Scale Applications in the LogGOPS Model,” in Proc. of the ACM
Workshop on Large-Scale System and Application Performance, Jun.
2010, pp. 597–604.

[20] G. Zheng, G. Kakulapati, and L. Kalé, “BigSim: A Parallel Simulator
for Performance Prediction of Extremely Large Parallel Machines,” in
Proc. of the 18th Intl. Parallel and Distributed Processing Symposium
(IPDPS), Apr. 2004.

[21] R. Bagrodia, E. Deelman, and T. Phan, “Parallel Simulation of Large-
Scale Parallel Applications,” IJHPCA, vol. 15, no. 1, pp. 3–12, 2001.

[22] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger,
and F. Zini, “OptorSim - A Grid Simulator for Studying Dynamic Data
Replication Strategies,” IJHPCA, vol. 17, no. 4, pp. 403–416, 2003.

[23] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling
for Grid Computing,” Concurrency and Computation: Practice and
Experience, vol. 14, no. 13-15, pp. 1175–1220, Dec. 2002.

[24] S. Ostermann, R. Prodan, and T. Fahringer, “Dynamic Cloud Provision-
ing for Scientific Grid Workflows,” in Proc. of the 11th ACM/IEEE Intl.
Conf. on Grid Computing (Grid), 2010, pp. 97–104.

[25] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning
Algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp. 23–
50, Jan. 2011.

[26] A. Nez, J. Vzquez-Poletti, A. Caminero, J. Carretero, and I. M. Llorente,
“Design of a New Cloud Computing Simulation Platform,” in Proc. of
the 11th Intl. Conf. on Computational Science and its Applications, June
2011, pp. 582–593.

[27] G. Kecskemeti, “DISSECT-CF: A simulator to foster energy-aware
scheduling in infrastructure clouds,” Simulation Modelling Practice and
Theory, vol. 58, no. 2, pp. 188–218, 2015.

[28] A. Montresor and M. Jelasity, “PeerSim: A Scalable P2P Simulator,” in
Proc. of the 9th Intl. Conf. on Peer-to-Peer, Sep. 2009, pp. 99–100.

[29] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in Proc. of the 10th IEEE Global
Internet Symposium. IEEE, May 2007, pp. 79–84.

[30] M. Taufer, A. Kerstens, T. Estrada, D. Flores, and P. J. Teller, “SimBA:
A Discrete Event Simulator for Performance Prediction of Volunteer
Computing Projects,” in Proc. of the 21st Intl. Workshop on Principles
of Advanced and Distributed Simulation, 2007, pp. 189–197.

[31] T. Estrada, M. Taufer, K. Reed, and D. P. Anderson, “EmBOINC: An
Emulator for Performance Analysis of BOINC Projects,” in Proc. of the
Workshop on Large-Scale and Volatile Desktop Grids (PCGrid), 2009.

[32] D. Kondo, “SimBOINC: A Simulator for Desktop Grids and Volunteer
Computing Systems,” Available at http://simboinc.gforge.inria.fr/, 2007.

[33] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Ver-
satile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2899–2917, 2014.

[34] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A High-Performance,
Low Memory, Modular Time Warp System,” in Proc. of the 14th
ACM/IEEE/SCS Workshop of Parallel on Distributed Simulation, 2000,
pp. 53–60.

[35] W. Chen and E. Deelman, “WorkflowSim: A Toolkit for Simulating
Scientific Workflows in Distributed Environments,” in Proc. of the 8th
IEEE Intl. Conf. on E-Science, 2012, pp. 1–8.

[36] A. Hirales-Carbajal, A. Tchernykh, T. Rblitz, and R. Yahyapour, “A
Grid simulation framework to study advance scheduling strategies for
complex workflow applications,” in In Proc. of IEEE Intl. Symp. on
Parallel Distributed Processing Workshops (IPDPSW), 2010.

[37] M.-H. Tsai, K.-C. Lai, H.-Y. Chang, K. Fu Chen, and K.-C. Huang,
“Pewss: A platform of extensible workflow simulation service for work-
flow scheduling research,” Software: Practice and Experience, vol. 48,
no. 4, pp. 796–819, 2017.

[38] S. Ostermann, K. Plankensteiner, D. Bodner, G. Kraler, and R. Prodan,
“Integration of an Event-Based Simulation Framework into a Scientific
Workflow Execution Environment for Grids and Clouds,” in In proc. of
the 4th ServiceWave European Conference, 2011, pp. 1–13.

[39] G. Kecskemeti, S. Ostermann, and R. Prodan, “Fostering Energy-
Awareness in Simulations Behind Scientific Workflow Management
Systems,” in Proc. of the 7th IEEE/ACM Intl. Conf. on Utility and Cloud
Computing, 2014, pp. 29–38.

http://simboinc.gforge.inria.fr/

[40] J. Cao, S. Jarvis, S. Saini, and G. Nudd, “GridFlow: Workflow Manage-
ment for Grid Computing,” in Proc. of the 3rd IEEE/ACM Intl. Symp.
on Cluster Computing and the Grid (CCGrid), 2003, pp. 198–205.

[41] “The SimGrid Project,” Available at http://simgrid.org/, 2018.
[42] P. Bedaride, A. Degomme, S. Genaud, A. Legrand, G. Markomanolis,

M. Quinson, M. Stillwell, F. Suter, and B. Videau, “Toward Better
Simulation of MPI Applications on Ethernet/TCP Networks,” in Prod.
of the 4th Intl. Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, 2013.

[43] P. Velho, L. Mello Schnorr, H. Casanova, and A. Legrand, “On the
Validity of Flow-level TCP Network Models for Grid and Cloud
Simulations,” ACM Transactions on Modeling and Computer Simulation,
vol. 23, no. 4, 2013.

[44] P. Velho and A. Legrand, “Accuracy Study and Improvement of Network
Simulation in the SimGrid Framework,” in Proc. of the 2nd Intl. Conf.
on Simulation Tools and Techniques, 2009.

[45] K. Fujiwara and H. Casanova, “Speed and Accuracy of Network Sim-
ulation in the SimGrid Framework,” in Proc. of the 1st Intl. Workshop
on Network Simulation Tools, 2007.

[46] A. Lèbre, A. Legrand, F. Suter, and P. Veyre, “Adding Storage Simula-
tion Capacities to the SimGrid Toolkit: Concepts, Models, and API,” in
Proc. of the 8th IEEE Intl. Symp. on Cluster Computing and the Grid,
2015.

[47] “The WRENCH Project,” http://wrench-project.org, 2018.
[48] “The ns-3 Network Simulator,” Available at http://www.nsnam.org.
[49] E. León, R. Riesen, A. Maccabe, and P. Bridges, “Instruction-Level

Simulation of a Cluster at Scale,” in Proc. of the Intl. Conf. for High
Performance Computing and Communications (SC), Nov. 2009.

[50] R. Fujimoto, “Parallel Discrete Event Simulation,” Commun. ACM,
vol. 33, no. 10, pp. 30–53, 1990.

[51] R. Matha, S. Ristov, and R. Prodan, “Simulation of a workflow execution
as a real Cloud by adding noise,” Simulation Modelling Practice and
Theory, vol. 79, pp. 37–53, 2017.

[52] L. Bobelin, A. Legrand, D. A. G. Márquez, P. Navarro, M. Quinson,
F. Suter, and C. Thiery, “Scalable Multi-Purpose Network Representation
for Large Scale Distributed System Simulation,” in Proceedings of the
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), Ottawa, Canada, May 2012, pp. 220–227.

[53] M. Turilli, M. Santcroos, and S. Jha, “A Comprehensive Perspective on
Pilot-Job Systems,” ACM Comput. Surv., vol. 51, no. 2, pp. 43:1–43:32,
2018.

[54] “Pegasus’ DAX Workflow Description Format,” https://pegasus.isi.edu/
documentation/creating workflows.php, 2018.

[55] “The Standard Workload Format,” http://www.cs.huji.ac.il/labs/parallel/
workload/swf.html, 2018.

[56] D. Lifka, “The ANL/IBM SP Scheduling System,” in Proc. of the 1st
Workshop on Job Scheduling Strategies for Parallel Processing, LCNS,
vol. 949, 1995, pp. 295–303.

[57] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” in Proc. of SIGCOMM, 2004.

[58] J. Frey, “Condor dagman: Handling inter-job dependencies,” University
of Wisconsin, Dept. of Computer Science, Tech. Rep, 2002.

[59] D. Thain, T. Tannenbaum, and M. Livny, “Distributed computing in
practice: the condor experience,” Concurrency and computation: prac-
tice and experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[60] “The WRENCH Pegasus Simulator,” https://github.com/wrench-project/
pegasus, 2018.

[61] R. Ferreira da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira, I. M.
Overton, and M. Atkinson, “Using simple pid controllers to prevent and
mitigate faults in scientific workflows,” in 11th Workflows in Support of
Large-Scale Science, ser. WORKS’16, 2016, pp. 15–24.

[62] R. Ferreira da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman,
“Community resources for enabling and evaluating research on scientific
workflows,” in 10th IEEE International Conference on e-Science, ser.
eScience’14, 2014, pp. 177–184.

http://simgrid.org/
http://wrench-project.org
http://www.nsnam.org
https://pegasus.isi.edu/documentation/creating_workflows.php
https://pegasus.isi.edu/documentation/creating_workflows.php
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
https://github.com/wrench-project/pegasus
https://github.com/wrench-project/pegasus

	Introduction
	Related Work
	WRENCH
	Objective and Intended Users
	Software Architecture Overview
	Simulation Core
	WRENCH Developer API
	WRENCH User API

	Case Study: Simulating a production WMS
	Implementing Pegasus with WRENCH
	Experimental Scenarios
	Simulation Accuracy
	Simulation Scalability

	Conclusion
	References

