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Abstract—Scientific workflows have enabled large-scale sci-
entific computations and data analysis, and lowered the entry
barrier for performing computations in distributed heteroge-
neous platforms (e.g., HTC and HPC). In spite of impressive
achievements to date, large-scale modeling, simulation, and data
analytics in the long-tail still face several challenges such as effi-
cient scheduling and execution of large-scale workflows (O(10°))
with very short-running tasks (few seconds). While the current
trend to support next-generation workflows on leadership class
machines have gained much attention in the past years, at the
other end of the spectrum scientific workflows from the long-
tail science have become larger and require processing massive
volumes of data. In this paper, we report on our experience in
designing and implementing an HTC workflow for agroecosystem
modeling. We leverage well-known (task clustering and co-
scheduling) and emerging (hierarchical workflows and contain-
ers) workflow optimization techniques to make the workflow
planning problem tractable, and maximize resource utilization
and the degree of task parallelism. Experimental results, via
the implementation of a use case, show that by strategically
combining the above strategies and defining an appropriate set
of optimization parameters, the overall workflow makespan can
be improved by 3.5 orders of magnitude when compared to a
regular (non-optimized) execution of the workflow.

Index Terms—Scientific Workflows, High-Throughput Com-
puting, Agroecosystem Modeling.

I. INTRODUCTION

Scientific workflows are mainstream for enabling compu-
tational science progress in several scientific domains [1],
[2]. Notable contributions include the first detection of grav-
itational waves from colliding black holes [3], wildfire re-
silience [4], among others. In recent years, there is a shift
toward developing systems that can support workflow appli-
cations that consume and produce large amounts of data or that
require high-performance computing, a situation commonly
termed as extreme-scale computing [5]. To address such
demand, solutions such as in transit (e.g., burst buffers [6],
[7]) and in situ processing [8] have emerged as centerpiece
technologies for supporting the next-generation of workflow
applications. Although supporting this new class of next-
generation complex applications is key for unleashing break-
through discoveries, computational science in the long tail still
imposes challenges when, for example, addressing complex
research questions [9], [10] such as: How the average crop
production would respond to different levels of soil fertiliza-
tion? Which fraction of weed would harm crop production for
different crops on distinct regions? How do fertilizer level and

weed pressure interact across regions, years or planting dates
within a growing season? The number of questions, and the
demands on a modeling system, can grow exponentially.

Advances in scientific computing in the long tail has pro-
duced technologies to automate the execution of scientific code
and data processing on distributed resources. In the context
of scientific workflows, software elements targeted robust and
efficient execution of computing jobs on campus clusters,
grid and volunteer computing, and more recently clouds [1].
Despite the fact that most scientific domains are increasingly
producing/consuming large, heterogeneous datasets, only a
small number of them in the long tail has developed or
amended software for parallel processing — this is mostly due
to the complexity inherent to modeling variables, equations,
iterations, etc. Therefore, with the advent of increasing het-
erogeneity, volumes of data, and data science and machine
learning techniques, there is still a need for solutions to address
these needs for scientific computing in the long tail.

In this paper, we report on our experience in designing
and implementing a high-throughput scientific workflow for
agroecosystems modeling. More specifically, we present the
challenges to handle the massive number of embarrassingly
parallel computing jobs (O(10°)), and how we leverage a set
of well-known (job clustering and co-scheduling) and emerg-
ing (hierarchical workflows and containers) technologies for
addressing such challenges. We implement the workflow with
the state-of-the-art Pegasus workflow management system
(WMS) [3]; we execute and characterize the workflow profile
on a local cluster with different optimization techniques; and
we draw conclusions on performance characteristics related to
the workflow structure. To make the planning and scheduling
problem tractable, we partition the workflow DAG into sub-
workflows. Experimental results show that by applying task
clustering, the overall workflow makespan is improved by
about three orders of magnitude when compared to a standard
non-optimized execution; and by allowing task-resource co-
allocation, such improvement is augmented up to 3.5 orders
of magnitude.

This paper is organized as follows. Section II presents an
overview of scientific workflows in the long tail, and a brief
description of the state-of-the-art Pegasus WMS. Section III
introduces the Cycles simulation software, and presents the
designed abstract workflow. Section IV presents our use case
implementation and experimental results. Finally, Section V



concludes with a brief summary of results and a discussion of
future research directions.

II. BACKGROUND AND RELATED WORK
A. Scientific Workflows in the Long Tail

Today’s computational and data science applications process
vast amounts of data (from remote sensors, instruments, etc.)
for conducting large-scale simulations of underlying science
phenomena. These applications may comprise millions of
computational tasks and process large datasets, which are
often distributed and stored on heterogeneous resources. Sci-
entific workflows have emerged as a flexible representation
to declaratively express complex such applications with data
and control dependencies, and have become mainstream in
domains such as astronomy, physics, environmental sciences,
biology, and others [1], [2], [11], [12]. With the advent of com-
plex modeling and increased volumes of data, some scientific
domains pursued the development of novel code that required
high-performance computing (HPC) platforms. For instance,
HPC-enabled workflows have supported hydrology [13], [14],
bioinformatics [15], among others. At the long tail, scientific
workflows have enabled the execution of high-throughput
computing (HTC) applications on grids and clouds — e.g.,
the Open Science Grid (OSG) [16] project and more recently
the upcoming NSF-funded cyberinfrastucture HPC systems
(Bridges-2 and Expanse) that will also provide specialized
support for HTC applications [17].

Along these past two decades, several workflow manage-
ment systems have developed techniques to optimize workflow
executions for the long tail [1], [2], [12], [18]. For instance,
task clustering has been used for overcoming system over-
heads when running very short-running tasks [19]. HPC-based
solutions were developed for wrapping entire workflows of
embarrassingly parallel tasks as MPI jobs [3], [20]. Container
support has been enabled for fostering reproducible and self-
contained execution environments [21], [22]. Nevertheless,
most of these works focus on a single or a couple of optimiza-
tions for orchestrating and executing workflows. In this paper,
we review some of these techniques and combine them with
more advanced and recent approaches for enacting efficient
execution of a large-scale agroecosystem modeling workflow,
while improving resource utilization.

B. Pegasus WMS

Pegasus is being used in production to execute workflows
for dozens of high-profile applications in a wide range of
scientific domains [3]. Pegasus provides the necessary ab-
stractions for scientists to create workflows and allows for
transparent execution of these workflows on computer clus-
ters, cloud services, national cyberinfrastructures, and other
platforms. During execution, Pegasus translates an abstract
resource-independent workflow into an executable workflow,
determining the specific executables, data, and computational
resources required for the execution. Workflow execution with
Pegasus includes data management, monitoring, and failure
handling, and is managed by HTCondor DAGMan. Individual

Fig. 1. Example of task co-allocation (left)) and clustering (right). When
co-allocating tasks, a single CPU may run multiple tasks concurrently; while
in clustering, tasks are typically executed sequentially in a pipeline.

workflow tasks are managed by a workload management
framework, HTCondor [23], which supervises task executions
on local and remote resources.

During the past two decades, the Pegasus software co-
evolved alongside ever growing scientific needs and appli-
cations and novel technologies [24]. In order to support
the development of the Agroecosystem modeling workflow
(Section III), and more specifically to support the execution of
the large-scale workflow execution, described in Section IV,
we have leveraged well-known Pegasus features as well as
more recently released capabilities as follows:

Task-resource co-allocation. Resource co-allocation enables
concurrent execution of multiple computational tasks within
a single CPU core (Fig. 1-leff) [25]. Co-allocation is typi-
cally implemented for maximizing resource utilization while
increasing parallelism. However, it should be used sparingly
since an excessive degree of parallelism may lead to significant
slowdown of the application execution.

Task clustering. Grouping sets of tasks reduces execution
overhead and increases the computational granularity of sci-
entific workflow tasks executing on distributed resources [19].
Traditionally, tasks are clustered together based on reasoning
regarding, for example, the workflow structure, tasks charac-
teristics, or user-based labelling. Clustered tasks are typically
mapped into a pipeline and executed sequentially (Fig. 1-right)
— although parallel execution can also be performed if running
in a multicore node. Notice that the dependency between tasks
in a pipeline may or not involve data dependency. We leverage
task co-allocation and clustering for diminishing scheduling
overheads, and therefore improving workflow makespan.

Hierarchical workflows. Workflows are in most cases de-
scribed as static DAGs, where the nodes represent computing
tasks and the edges dependencies between tasks (either data or
control dependencies). With the advent of extreme-scale com-
puting, workflows became ever larger (O(10°) tasks), which
led the workflow planning process (creation and scheduling)
intractable. Hierarchical workflows emerged then as a solution
for mitigating this issue by allowing nodes of the DAG to
represent entire sub-workflows — in which a hierarchy of sub-
workflows can be defined (Fig. 3). This way, such large-scale
workflows can be partitioned into moderate-scale, tractable
sub-workflows. An alternative use of hierarchical workflows is
for enabling conditions and late binding. By capitalizing on the
ability to define sub-workflows as nodes in the DAG, planning
only occurs once the sub-workflow node will be executed, i.e.



once all its dependencies have been satisfied. In this paper,
we leverage late binding and sub-workflow partitioning, thus
enabling the use case presented in Section IV.

Containers. Container technologies have become keystone for
fostering reproducibility in scientific computing. They provide
a flexible, custom, user-controlled environment for executing
applications seamlessly — containers provide self-contained
execution environments where all dependencies of the software
stack have been resolved. We leverage the recently released
Pegasus’ approach [21] on efficiently managing automatic
container deployment to mitigate application execution errors
due to misconfigurations or missing dependencies.

By combining the four key features above, planning and
executing high-throughput large-scale workflows become prac-
ticable, while yielding better resource utilization and improved
efficiency, thereby improved workflow turnaround time.

III. THE CYCLES HIGH-THROUGHPUT WORKFLOW

In this section, we present a brief description of the Cycles
simulation model and its main capabilities. We also present the
abstract (i.e., platform and scenario agnostic) implementation
of the workflow to support large-scale simulation executions.

A. Cycles Simulation Model

Cycles is a user-friendly, multi-crop, multi-year, process-
based Agroecosystem model with daily time step simulations
of crop production and the water, carbon (C) and nitrogen
(N) cycles in the soil-plant-atmosphere continuum. The model
is an evolution of C-FARM [26] and is closely related to
CropSyst [27]. The hydrology is simulated with an adaptive
sub-daily time step. The algorithms of heat and water transport
were adapted from [28]. The reference evapotranspiration is
calculated using the Penman-Monteith equation as formulated
in [29]. Daily plant growth is based either on the radiation
capture (light limited) and or on the realized transpiration
(water limited), an approach that surrogates for a coupled
transpiration and photosynthesis model [30]. In Cycles, the
stomatal conductance is determined by temperature and the
leaf water potential, with the latter depending on the balance
of the transpirational demand, the soil water supply and plant
hydraulic properties [31], [32]. Crop development is calculated
using thermal time, and grain yield is calculated using the
biomass accrued and the harvest index [33]. Soil organic C and
N cycling is based on saturation theory [34]. The minimum
inputs to the model are: latitude, daily weather (minimum and
maximum temperature and relative humidity, precipitation, so-
lar radiation, and wind speed), soil description (layer thickness,
clay, sand and organic matter content), cropping sequence, and
management information.

The model can simulate perturbations of biogeochemical
processes caused by agronomic practices such as tillage,
irrigation, organic and inorganic nutrient applications, annual
and perennial crops selection, grain and forage harvest, poly-
cultures, relay cropping and grazing. Cycles allows unlimited
crop species to be specified by the user. The current model set
up has a spin up feature to allow a quasi-equilibrium in soil
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Fig. 2. Overview of a single configuration definition of a Cycles abstract
(i.e., platform and scenario agnostic) workflow. The model output is evaluated
against a reference or baseline.

properties that effectively establish a baseline. The model is
run repeatedly using the same climate until total soil organic
carbon in the soil profile changes by less than 0.1% before and
after a simulation cycle. All soil properties are stored and are
used as initial condition for the remainder of the user-defined
simulation. The user needs to decide which input files must
be used to establish a baseline.

B. Cycles Abstract Workflow

With the Cycles simulation model, a user can explore
a domain that is much larger than what can be explored
experimentally. To this end, the model needs to be used with a
range of inputs compatible with the model calibration domain,
which may limit model accuracy (e.g., actual soil descriptions,
particularly in non-agricultural soils). The proposed Cycles
workflow aims to aid researchers to answer questions such
as: What is the fraction of the years or fraction of an
agricultural area in which crops establishment fails? What
is the expected response to inputs (nitrogen fertilizer and
other inputs) or long term effect of rotations?. The workflow
can also be used to estimate carbon dioxide, nitrous oxide
emissions/uptake in agriculture systems, both of which are key
component of the global warming potential of agroecosystems.
For these purposes, we use a sequential approach, in which
the model output is evaluated against a reference or baseline
(Cycles_baseline) that is also obtained with the model and
is based on realistic assumptions.

Fig. 2 shows a representation of the Pegasus Cycles abstract
workflow for a single configuration run (e.g., one point of the
grid cell, a single crop, and a particular set of unique parame-
ters or system properties). Once the reference or baseline task
is completed, the actual Cycles simulation is launched. We
also perform an additional execution of Cycles with increased
fertilizer rate of 10% (Cycles_fertilizer_increase) —
such output is key to forecasting the economic impact of grain
yields.

In order to answer research questions such as the ones
illustrated above, one would have to execute Cycles simula-
tion model for a range of system properties (e.g., nitrogen
fertilization rates, weed fractions) in different locations (may
involve several points of the spatial grid), and for different
crops. Such set of executions, a.k.a. ensembles, may quickly
scale up to hundreds of thousands of parameters combinations,
and therefore up to O(10%) computational tasks in a workflow.
As discussed in Section II-B, static planning and scheduling
such large-scale workflows is a cumbersome process and to
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Fig. 4. Overview of a Cycles “sub-workflow” structure. The sub-workflow is
composed of several branches, which are defined by the number of different
crops. Each branch performs agroecosystem simulations for individual crops
taking into consideration all combinations of the simulation matrix.

some extent an intractable problem. To address this challenge,
we capitalize on Pegasus’ hierarchical workflow feature to
partition ensembles into sub-workflows to mitigate the plan-
ning and scheduling problem. Fig. 3 shows the “top level”
structure of the Cycles abstract workflow. A sub-workflow
(Cycles_subwf) represents an ensemble for a determined
location (grid cell). To limit the number of concurrent exe-
cutions and make scheduling more efficient, we define control
dependencies between sub-workflows — a sub-workflow will
only be planned and executed once the parent sub-workflow
execution is completed.

Each Cycles simulation needs weather data for inferring
weather conditions such as rain, air temperature, wind, etc.
The GLDAS_to_Cycles task receives as input a set of GLDAS
(Global Land Data Assimilation System) data products [35],
and parses them into the Cycles required format for weather
information. Although the number of locations is relatively
small when compared to the number of parameters combina-
tions, the input data size is rather large (O(10?)GB). Thus,
such tasks are set to run concurrently.

Fig. 4 shows the structure of a Cycles_subwf. The sub-
workflow represents an ensemble of Cycles simulation runs for
different crops (defined as “branches”). Each branch is com-
posed of possibly several (O(10%)) executions of the Cycles
single configuration workflow (Fig. 2). In order to generate
relevant and concise data products, e.g. for visualization, the
Cycles_output_summary task aggregates and summarizes
all outputs for a single crop.

IV. USE CASE: UNDERSTANDING MAJOR AGRICULTURAL
OUTPUTS IN SOUTH SUDAN

Evaluating agricultural production in most regions of the
world is still a challenging problem: (i) agricultural systems
tend to be detail-rich, leading expert and non-expert users to
focus in the noise rather than on the broad aspect of the prob-
lem; (i7) from the simulation perspective, specific information
about management practices and actual output (e.g., yield,
production areas) could be missing or incomplete to derive
significant results (e.g., South Sudan), forcing analysts and
modelers to either build simulations on too many assumptions
or run large numbers of simulations that then become laborious
to interpret. In short, (iii) simulating agricultural systems
in ways that produce meaningful outputs requires quickly
merging a biophysical understanding of different systems and
landscapes with the human realities of a given location.

A. Cycles Simulation Matrix

To address the above issues, we designed an approach for
generating a matrix of simulations that, using expert judge-
ment, brackets the management practices in a given region.
For example, one may not know the specifics about nitrogen
fertilizer management in a region, but nothing prevents a user
from running simulations that include a wide range of fertilizer
rates that surely include the range of interest. This concept
is generalized to other system properties including irrigation,
weed control, crop species, and rotations. The more one
knows, the more restricted the range, but limited information
should not be an impediment for exploration.

Table I shows the simulation matrix for Cycles system
properties used in this case study. The start planting date
variable levels are in days of the year (January 1st = 1);
planting dates are spaced out 7 days until the end of the
planting date. The planting date can be fixed (i.e., in a given
day) or conditional to soil moisture and temperature. Nitrogen
fertilization rates are in kg/ha of nitrogen. The weed fraction
is an abstraction to represent low to high weed pressure.
The weeds are planted a week after the crop planting and
left uncontrolled. Two weeds are planted, so when the weed
fraction for a weed species is 0.4 and two different species
are planted, there is a population of weeds equivalent to that
of the crop. More severe weed pressures can be simulated.



TABLE I
CYCLES SIMULATION MATRIX.

Parameter Values
Country South Sudan
Crop Maize, Sorghum, Sesame, Peanut
Start planting date 100, 107, 114, 121, 128, 135, 142
End planting date 149
Planting date fixed True, False
Nitrogen rate 0, 25, 50, 100, 200, 400
Weed fraction 0.0, 0.05, 0.1, 0.2, 0.4, 1.5, 2.0

We consider a Cycles workflow instance composed of 2,352
properties combinations (cross product of all properties values)
for a single point in a spatial grid, which resulted in 7,056
Cycles executions per sub-workflow (Fig. 4). In this paper,
we consider GLDAS grids within South Sudan at 0.5 degree
resolution, which resulted in 209 locations. As a result, the
Cycles use case workflow considered here is composed of
209 sub-workflows. In total, the particular workflow instance
studied here is composed of 1,475,122 computational tasks,
which includes weather transformation and output summary
tasks. Notice that given that peanut (a.k.a. groundnut) can
obtain nitrogen from the atmosphere via biological fixation, we
do not do Cycles simulations to obtain a response to nitrogen
fertilization.

B. Workflow Execution Profile

The analysis presented in this work is based on the exe-
cution of an instance of the Cycles workflow derived from
the simulation matrix shown in Table I. Workflow executions
are performed on a local server, which is equipped with two
2.2GHz AMD EPYC 7601 32-Core Processors, 296GB of
RAM, and standard magnetic hard drives in RAID configura-
tion. Due to the large number of tasks involved in this instance
of the workflow execution (O(10°)), we must partition the
workflow into sub-workflows to make the planning problem
tractable. For instance, planning all task of the workflow would
require O(10%2) GB of RAM and several hours to map the
abstract workflow into an executable workflow. The workflow
generator code including the simulation matrix generation are
available online'.

Table II shows the execution profile of Cycles workflow
tasks, with one row per task type. These profiles were obtained
from workflow executions with no performance optimiza-
tions, i.e., a single task was allocated to a single core. This
way, we ensure task runtime and CPU utilization are not
impacted by concurrent executions. The GLDAS_to_Cycles
tasks reads over 6,000 weather files (~1TB) and generates
files in a format compatible with the Cycles model input
requirements. These 209 tasks run over 6 h in our server
and are an integral part of the DAG critical path. Cycles
simulation model tasks (Cycles_baseline, Cycles, and
Cycles_fertilizer_increase) run fast (under 10s). How-
ever, due to the massive number of tasks (derived from

Thttps://github.com/pegasus-isi/pegasus-cycles
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the Cycles workflow. Simulations with increased fertilizer (nitrogen) are not
performed for Peanut.

the simulation matrix shown in Table I), these tasks rep-
resent the bottleneck of the execution critical path. The
Cycles_output_summary tasks are very short-running tasks,
yet mostly data-intensive (perform over 4GB of I/O read
operations).

Fig. 5 shows the distribution of Cycles simulation task
runtimes for different crops. Although average tasks run-
time and standard deviations are relatively similar (Table II),
different configurations (crops, fertilizer rate, weed pres-
sure, and others) cause different behaviors in execution, e.g.
Cycles_baseline tasks, and whisker and outlier values (in
particular for Peanut). Such small task runtime differences
can become important during scheduling, and more specif-
ically when considering system and workflow system over-
heads [36]. With the advent of using containers for fostering
reproducible and self-contained execution environments, a new
class of system overhead has been introduced to task execu-
tions. Building, distributing, and loading containers may lead
to high overhead when running large-scale workflows [22]. Pe-
gasus support for containers minimizes this effect (as discussed
below), however for the Cycles simulation model tasks shown
in Table II, container overhead may represent up to 22% of the
task execution time (container overhead measurements vary
between 0.8s and 1.4s for these runs). Despite the fact that this
overhead interval is substantially small, when orchestrating
a large number of very short-running workflow tasks this
may become a significant factor of the workflow performance
bottleneck. Overall, the workflow makespan (a.k.a. turnaround
time) for this profiling run is ~311h, being 2.1% performing
weather transformations, 97.8% performing computations with
the Cycles simulation model, and 0.1% summarizing and
preparing data for visualization.

C. Optimized Workflow Execution

Orchestrating workflow executions from the long tail typi-
cally entails efficiently handling very large numbers of short-



TABLE II
EXECUTION PROFILES OF THE CYCLES WORKFLOW JOBS. RUNTIMES ARE SHOWN IN SECONDS, AND I/O OPERATIONS IN MB. (u IS THE MEAN, AND
o THE STANDARD DEVIATION.)

Runtime CPU Utilization I/0 Read I/0 Write

Task Count
m o " o m o m o
GLDAS_to_Cycles 209 | 22,4863 1427 | 84.1% 1.2% | 1,001,690 0.0 05 00
Cycles_baseline 614,460 8.2 . 75.2% 1.4% 05 00| 214 0.1
Cycles_fertilizer_increase 614,460 6.1 2.3 65.6% 1.8% 05 0.1 21.6 0.1
Cycles 614,460 6.2 24 | 59.7% 2.1% 05 0.1 | 21.6 0.1
Cycles_output_summary 1,045 3.6 72.3% 2.4% 45144 0.1 27 00
generate_graphs 1 20.3 - | 81.2% - 2,821.5 - | 113 -

running embarrassingly parallel tasks. As mentioned before,
computing and workflow systems have inherent overheads
that may harm the workflow execution (e.g., planning and
queuing times, cleanup tasks, container spin up, etc.) [36].
More specifically, the overhead for scheduling and running
Cycles simulation model tasks is significantly higher than the
length of the task execution itself. This does not only incur
in increased workflow makespan, but also in low resource
utilization, and thereby low task throughput.

Task clustering. Given the above, we leverage task clustering
to mitigate the overhead impact on the workflow execution. We
also leverage Pegasus container support [21] for optimizing
clustered jobs (sets of workflow clustered tasks) execution
to overcome the container spin up and system overheads. In
Pegasus, a set of clustered jobs share the same container during
its execution, given that all tasks within the clustered job are of
the same type. By using a single container for running a batch
of grouped tasks (executed as a pipeline), the container spin-up
overhead becomes negligible when compared to total cluster
runtime (the larger the cluster, the smaller the overhead).
In contrast, sharing containers instance requires additional
effort for handling the execution directory (working directory)
structure, e.g. files and folders names may be conflicted, etc.

For the optimized experimental executions presented in this
Section, we limited clustering for Cycles simulation model
tasks only. We arbitrarily define cluster sizes up to 10, 15,
20, 25, and 50 tasks, and compare the impact of different
cluster sizes on overhead mitigation and ultimately workflow
turnaround time. Table III shows the average task runtime
for the clustered Cycles simulation executions. As expected,
average clustered job runtime increases as the number tasks
forming a cluster is higher. By using task clustering, system
overheads become negligible and offers workflow makespan
improvements up to three orders of magnitude, i.e. speedup
of 3 (shown in Table IV). For larger cluster sizes (>20, i.e.
coarse-grained clusters), workflow makespan has plateaued —
mainly due to low degree of parallelism.

A more recent approach for improving container support
in HTC is to use the CVMES filesystem (CernVM File Sys-
tem) [37], an HTTP-based file distribution service, for staging
in the container images once to the server, and distributing
it to compute nodes. CVMES is currently used by the Open
Science Grid (OSG) project, and has demonstrated improved

I/O throughput by constantly avoiding pulling the container
image from an external endpoint (e.g., docker or singularity
hubs) for every task execution, thus container overhead spin
up is significantly reduced. On the other hand, by running on a
container from a distributed filesystem incurs network delays.
For the experiments conducted in this paper, we observed a
critical slowdown (up to a factor of two orders of magnitude)
when performing data integrity checks due to network delays
when running OpenSSL. Such slowdown goes unnoticed for
long-running tasks, thus the improved performance on OSG
systems. Therefore, we claim that when designing a solution
for running large-scale workflows with short-running tasks,
network latency should be carefully considered.

Increased task and sub-workflow parallelism. Although sys-
tem overheads are attenuated via task clustering, too-coarse
clustered jobs may lead to low degree of parallelism, and
thereby low resource utilization. To overcome this low per-
formance while at the same time reducing the overall work-
flow turnaround time, we leverage task-resource co-allocation.
Since Cycles simulation model tasks do not fully utilize the
CPU capacity (see Table II) and since low degree of paral-
lelism is observed for cluster sizes larger than 20, we config-
ured the workload resource manager (HTCondor [23]) to allow
task-resource co-allocation. We set the maximum allowed co-
allocation to 2. We have also modified the workflow structure
(Fig. 3) to permit up to four sub-workflows to run concurrently
(depending on the degree of task parallelism). Table III also
shows average runtime for Cycles simulation clustered jobs
running with co-allocation. As expected, runtimes are slightly
degraded due to increased concurrency on the CPU usage —
recall that CPU utilization for Cycles simulation model tasks
is above 50%. On the other hand, overall workflow makespan
is improved by up to 3.5 orders of magnitude when compared
to the non-optimized execution of the workflow, and up to an
order of magnitude for smaller cluster sizes when compared to
optimized executions, as shown in Table IV. Notice that due
to increased degree of parallelism, the plateaued speed up for
larger cluster sizes moderately increases.

D. Output Products and Visualization

Fig. 6 shows simulated grain yield response of maize for
different fertilization rates and weed pressure levels for a
single grid cell (identified as a cropland). The outcome of these
simulations allow analysts to identify year to year variations



TABLE III
RUNTIME IN SECONDS FOR CYCLES SIMULATION CLUSTERED JOBS RUNNING ON A SINGLE CORE OR CO-ALLOCATED. CLUSTER SIZES RANGE BETWEEN
10 AND 50 TASKS.

Method Cycles_baseline | Cycles_fertilizer_increase | Cycles
10 15 20 25 50 [ 10 15 20 25 50 [ 10 15 20 25 50
1 task per core 93.7 138.6 186.2  219.8  391.6 61.9 93.5 124.4 1619  355.2 62.5 93.6 1258 163.8  364.1
P (£103) (£182) (£22.0) (£224) (£525) | (£5.6) (£10.0) (£143) (£164) (£72.6) | (F6.1) (+83) (£144) (£149) (£70.7)
Co-allocation 99.2  141.7 1969 2423 5579 64.3 100.0 129.9 163.3  360.1 64.5 100.3 136.4 1654 3719
(£10.1) (£143) (£192) (£302) (£843) | (£7.3) (£79) (£19.9) (£11.5) (£46.5) | (£7.4) (£10.1) (£134) (£14.5) (£49.4)
TABLE IV
WORKFLOW MAKESPAN IN HOURS FOR EXECUTION ON A SINGLE CORE 12
OR CO-ALLOCATED. CLUSTER SIZES RANGE BETWEEN 10 AND 50 TASKS. ?
9 7’ ~ e
. o P 7 —T ~
. Cluster Sizes e o S
Method ‘ No clustering 0 s 50 75 55 ) ./// i /
e
1 task per core 311.1 181.2 1287 1052 105.1 104.9 /’/ s ,;
Co-allocation 2374 1289 1141 992 938 86.6 3 7. 7z
/7 /7
E 7 v
> 0
=
in, for example, grain yield, but many other variables of 3
production or environmental quality importance are available. % v
By comparing the simulated grain yield production from 2017  ©
. . . . . . 9
to previous years, it is immediately clear that in that year there -t
was a steep fall in grain yield and a weak response to fertilizer. P =T
R 6 L ~
Therefore, one can conclude that after several years of variable Oz  AEESTT LR
but never catastrophically low yields, a poor harvest can s pire ‘//’/ g i
surprise local stakeholders and humanitarian agencies. Tactical //’/ //’

adjustments like switching crops and obtaining new seeds are
not instantaneous and requires months of preparation; so does
aid distribution. Two years in a row of unfavorable weather
and poor crop yields would likely turn into a disaster.

The modeled response to nitrogen fertilizer rates is substan-
tial and requires three qualifications. First, it depends on weed
pressure. Adding fertilizer without the ability of controlling
weeds can lead to severe problems. Weed control can be
limited by availability of labor, equipment or suitable agro-
chemicals, and by the weather. Many producers in areas of
subsistence agriculture mix crops in small plots or even in
the same row, which also complicates chemical weed control.
Second, soil conditions can vary. Areas with shallower soils
can have less soil water storage, a much subdued response
to fertilizer and lower average yields. Third, even in this
relatively narrow geographical area, there are clear variations
among locations. Thus, while a smooth workflow can facilitate
modeling and exploration, visualization procedures should aid
the analyst understand the power and limitations of the outputs
in the proper context.

V. CONCLUSION

In this paper, we have reported on our experience in
designing and implementing a large-scale high-throughput
workflow for agroecosystem modeling. By leveraging well-
known optimization techniques and emerging technologies for
workflow design and execution, we have made the workflow
planning and scheduling problem tractable while improving

0 100 300 400 0

Nitrogen Rate (kgN/ha)

100 200 300 400

Weed Fraction 0 005+ = 0.1 ==0.2 0.4

Fig. 6. Maize grain yield response to nitrogen fertilizer rate and weed pressure
for a single location in four years.

resource utilization, and thereby workflow turnaround time.
Our experimental use case, comprised of over 1.4M tasks,
showed that by carefully strategizing and parameterizing the
optimization methods, the overall workflow makespan could
be improved by 3.5 orders of magnitude.

A short-term development direction is to perform a per-
formance gain comparison between the presented approach
and HPC-based solutions such as Pegasus PMC [3]. Another
future work goal is to extend the synthetic workflow generator
in [38], which produces realistic synthetic workflow configu-
rations based on profiles extracted from workflow execution
traces, to generate workflow traces based on the Cycles
workflow. Such traces are key for supporting the development
of new algorithms and solutions in workflow research [39].
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