
A Terminology for Scientific Workflow Systems

Frédéric Sutera,∗, Tainã Colemanb,∗, İlkay Altintaşb, Rosa M. Badiac, Bartosz Balisd, Kyle Charde, Iacopo Colonnellif,
Ewa Deelmang, Paolo Di Tommasoh, Thomas Fahringeri, Carole Goblej, Shantenu Jhak, Daniel S. Katzl, Johannes Kösterm,

Ulf Lesern, Kshitij Mehtaa, Hilary Olivero, J.-Luc Petersonp, Giovanni Pizziq, Loı̈c Pottierp, Raül Sirventc, Eric Suchytaa,
Douglas Thainr, Sean R. Wilkinsona, Justin M. Wozniaks, Rafael Ferreira da Silvaa

aOak Ridge National Laboratory, TN, USA
bUniversity of California, San Diego, CA, USA

cBarcelona Supercomputing Center, Barcelona, Spain
dAGH University of Krakow, Krakow, Poland

eUniversity of Chicago, Chicago, IL, USA
fUniversity of Torino, Torino, Italy

gInformation Sciences Institute, University of Southern California, Marina del Rey, CA, USA
hSeqera Labs, Barcelona, Spain

iUniversity of Innsbruck, Institute of Computer Science, Innsbruck, Austria
jUniversity of Manchester, Manchester, United Kingdom

kRutgers University-New Brunswick; Princeton Plasma Physics Laboratory; Princeton University, NJ, USA
lNCSA & School of Computing and Data Science & iSchool, University of Illinois Urbana-Champaign, IL, USA

mUniversity of Duisburg-Essen, Essen, Germany
nInstitute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
oNational Institute of Water and Atmospheric Research, Wellington, New Zealand

pLawrence Livermore National Laboratory, Livermore, CA, USA
qPSI Center for Scientific Computing, Theory and Data, Villigen, Switzerland

rUniversity of Notre Dame, Notre Dame, IN, USA
sArgonne National Laboratory, Lemont, IL, USA

Abstract

The term “scientific workflow” has evolved over the last two decades to encompass a broad range of compositions of interdependent
compute tasks and data movements. It has also become an umbrella term for processing in modern scientific applications. Today,
many scientific applications can be considered as workflows made of multiple dependent steps, and hundreds of workflow systems
have been developed to manage and run these scientific workflows. However, no turnkey solution has emerged from the field
to address the diversity of scientific processes and the infrastructure on which they are supposed to be implemented. Instead,
new research problems requiring the execution of scientific workflows with some novel feature often lead to the development of
an entirely new workflow system. A direct consequence of this situation is that many existing workflow management systems
(WMSs) share some salient features, offer similar functionalities, and can manage the same categories of workflows but at the
same time also have some distinct capabilities that can be important for specific applications. This situation makes researchers
who develop workflows face the complex question of selecting a WMS. This selection can be driven by technical considerations,
to find the system that is the most appropriate for their application and for the computing and storage resources available to them,
or other factors such as reputation, adoption, strong community support, or long-term sustainability. To address this problem, a
group of WMS developers and practitioners joined their efforts to produce a community-based terminology of WMSs. This paper
summarizes their findings and introduces this new terminology to characterize WMSs. This terminology is composed of fives axes:
workflow structure and characteristics, composition, orchestration, data management, and metadata capture. Each axis comprises
several concepts that capture the prominent features of WMSs. Based on this terminology, this paper also presents a classification
of 23 existing WMSs according to the proposed axes and terms.

Keywords: Scientific workflows, workflow management systems, community-based terminology

⋆This manuscript has been authored in part by UT-Battelle, LLC, under con-
tract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US
government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevo-
cable, worldwide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government purposes. DOE will
provide public access to these results of federally sponsored research in accor-

dance with the DOE Public Access Plan (http://energy.gov/downloads/
doepublic-access-plan).
∗Corresponding authors
Email addresses: suterf@ornl.gov (Frédéric Suter),

t1coleman@ucsd.edu (Tainã Coleman), ialtintas@ucsd.edu (İlkay
Altintaş), rosa.m.badia@bsc.es (Rosa M. Badia), balis@agh.edu.pl
(Bartosz Balis), chard@uchicago.edu (Kyle Chard),

Preprint submitted to arXiv July 10, 2025

ar
X

iv
:2

50
6.

07
83

8v
6 

 [
cs

.D
C

] 
 9

 J
ul

 2
02

5

http://energy.gov/downloads/doepublic-access-plan
http://energy.gov/downloads/doepublic-access-plan
https://arxiv.org/abs/2506.07838v6


1. Introduction

The concept of workflows, i.e., the execution of orches-
trated and repeatable patterns of activity, dates back to the early
1900s when the engineering and manufacturing community in-
troduced one of the earliest examples of procedural workflow:
the Ford assembly line adopted by automobile manufacturers
to this date. Workflows has been used to model, analyze, and
improve business processes, using tools such as flow charts,
functional flow block diagrams, or control flow diagrams [1].
The database community has also used workflows to address
the challenges of managing large datasets [2]. The capacity
to describe and orchestrate such complex applications popular-
ized workflows across multiple scientific domains. The term
scientific workflow itself was introduced in 1996 [3, 4] to dif-
ferentiate this specific type of workflow from the business and
automation pipelines that inspired them. As scientific workflow
may designate processes that go beyond science to cover more
broadly defined research activities, we opted for the use of the
term workflow in the remainder of this article with the following
all-encompassing definition:

Definition. A workflow is a structured sequence of computa-
tional tasks or activities that achieve a research or analytical ob-
jective. Workflows define the flow of work, including the order
of steps, the data and control dependencies between them, and
the rules governing their execution. Modern workflows extend
beyond traditional directed acyclic graphs to encompass dy-
namic, adaptive, and interactive processes that may include cy-
cles, branches, and human-in-the-loop components. They span
diverse domains, including scientific research, engineering, hu-
manities, and business, and bridge heterogeneous computing
environments from edge devices to high-performance comput-
ing (HPC) facilities and cloud infrastructure.

Over the past decades, workflows have become the predom-
inant format for describing complex, multi-step, multi-domain
scientific applications [5]. To manage the composition, plan-
ning, orchestration, and automation of the efficient execution of
such workflows on powerful and often distributed compute in-
frastructures, a wide variety of workflow management systems
(WMSs) have been proposed [6]. However, domain researchers
who develop workflows and want to rely on a WMS to execute
them often face the complex question of selecting a particular
WMS. This selection can be driven by technical considerations,

iacopo.colonnelli@unito.it (Iacopo Colonnelli), deelman@isi.edu
(Ewa Deelman), paolo@seqera.io (Paolo Di Tommaso),
Thomas.Fahringer@uibk.ac.at (Thomas Fahringer),
Carole.Goble@manchester.ac.uk (Carole Goble),
shantenujha@acm.org (Shantenu Jha), d.katz@ieee.org (Daniel S.
Katz), johannes.koester@uni-due.de (Johannes Köster),
leser@informatik.hu-berlin.de (Ulf Leser), mehtakv@ornl.gov
(Kshitij Mehta), hilary.oliver@niwa.co.nz (Hilary Oliver),
peterson76@llnl.gov (J.-Luc Peterson), giovanni.pizzi@psi.ch
(Giovanni Pizzi), pottier1@llnl.gov (Loı̈c Pottier),
Raul.Sirvent@bsc.es (Raül Sirvent), suchytaed@ornl.gov (Eric
Suchyta), dthain@nd.edu (Douglas Thain), wilkinsonsr@ornl.gov (Sean
R. Wilkinson), woz@anl.gov (Justin M. Wozniak), silvarf@ornl.gov
(Rafael Ferreira da Silva)

such as finding the most appropriate system for their application
and for the computing and storage resources available to them,
or factors such as reputation, adoption, community support, or
long-term sustainability. The main reasons for this challenge
are that no single ideal turnkey solution has emerged from the
field to address the diversity of scientific processes and the het-
erogeneity of possible execution environments (both in terms
of hardware and software). Instead, new research problems or
new computer technologies related to the execution of work-
flows often lead to the development of an entirely new workflow
management system.

A direct consequence of this situation is that many existing
WMSs share some salient features, offer similar functionalities,
and can manage the same categories of workflows, but often
also have distinct features tailored for specific types of prob-
lems. This has been highlighted by different efforts to create
taxonomies and characterizations of workflows and WMSs [7–
15]. These efforts can help to provide workflow developers with
some guidance when trying to select the appropriate tool to de-
velop and execute their workflows, but they are also notoriously
incomplete and quickly outdated in a fast-moving field. Con-
sequently, decisions for specific systems are very often based
on social aspects as much or more than on technical ones (e.g.,
previous experience in the community, word-of-mouth, com-
ments in web forums, personal evaluation of a few known sys-
tems). Inspired by the work of the in situ processing community
for data visualization and analysis systems [16], we propose in
this article to go beyond a traditional taxonomy and develop
a consistent terminology to describe WMSs. While it shares
similarities with and builds on existing taxonomies, the driving
principle of this effort was to determine terms that consensually
describe the high-level features of workflows and WMSs, rather
than categorizing systems based on implementation details.

To this end, we gathered a group of workflow system de-
velopers and workflow practitioners, all members of the Work-
flows Community Initiative (WCI) [17], and followed a process
similar to that in [16] to create a strong terminology for WMSs.
This paper synthesizes the discussions initiated during the dif-
ferent editions of the Workflows Community Summit [18–23],
which led to the writing of this paper. The main contribution of
this paper is the identification of five axes to characterize WMSs
(Figure 1). Each axis comprises a series of concepts that cap-
ture the most salient features of WMSs. Based on the proposed
terminology, our group analyzed 23 actively developed WMSs
that are part of the WCI to determine which combination of
terms can define each of them.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the proposed five axes to describe a workflow
system. Section 3 reviews the 23 selected WMSs and classifies
them according to the proposed axes and terms. Section 4 de-
scribes the process followed by members of the WCI to produce
this terminology and Section 5 discusses previous efforts to es-
tablish taxonomies of WMSs. Finally, Section 6 summarizes
our work.

2



Task

Iterative

Description Method Provenance

Metadata Capture

Anomaly Detection

Monitoring

Workflow Characteristics Composition

Axes of Scientific Workflow Systems

Ad-hoc

Tight

Loose

Coupling

Flow

Branches

Runtime interventions

Dynamicity

Data Management

Functions

Standalone executables

Granularity

Sub-workflows

Schema

API

GUI

Level of Abstraction

Modularity

Execution

Orchestration

Planning

File System

Local

Shared

Distributed

Replicated

Storage

Specific

Agnostic

Domain

Standard

Implicit

Abstract

Intermediate

Flat

Hierarchical

Static

Dynamic

Runner

Resource Manager

Event-DrivenData

Concrete

Granularity

Batch

Pipelined

Transport

File-based

Streaming

In-memory

Network

Partitioned

Serverless

Figure 1: Five axes that categorize workflows and workflow management systems, with each axis further delineated into corresponding terms and sub-terms to
provide a structured and detailed terminology.

2. Axes of Scientific Workflow Systems

WMSs often consist of subsystems that handle specific as-
pects of workflow management, such as resource allocation,
task scheduling, or, data management. A WMS coordinates
these subsystems to ensure efficient and robust execution. Addi-
tionally, characterizing a given workflow system requires con-
sidering the characteristics of the workflows it can support, as
it often influences the design of the system. The primary goal
of defining this terminology is to help scientists navigate the
wide range of available tools [6] and better express their com-
putational needs. To achieve this, we identified five key axes to
describe a workflow system:
• Workflow Characteristics: This axis examines funda-

mental organizational aspects that impact how workflows
operate and adapt. Specifically, it examines how execu-
tion is driven (by tasks or data), the level of complexity
of individual components, the nature of dependencies be-
tween these components, and the ability to modify exe-
cution paths at runtime. These structural elements signif-
icantly influence how WMSs optimize resource use and
performance.
• Composition: This axis addresses how workflows are

defined, organized, and configured by WMSs. It ex-
plores the methods used to describe workflows, the level
of detail required in these descriptions, and how com-
plex workflows can be shaped from simpler components.
This axis helps to understand how accessible and flexi-
ble different WMSs are for users with varying technical
backgrounds.

• Orchestration: This axis covers the implementation and
execution management approaches for workflow compo-
nents. It analyzes different methods for launching and
coordinating tasks, from direct execution to more sophis-
ticated approaches that leverage distributed resources,
event-based triggers, or cloud services. These orchestra-
tion strategies determine how efficiently workflows use
available computing infrastructure.
• Data management: This axis focuses on how data is

handled throughout the workflow lifecycle. It character-
izes methods for moving data between workflow com-
ponents, approaches to storing data at different stages,
and techniques for optimizing data access patterns. These
data management strategies significantly affect workflow
performance, especially for data-intensive applications.
• Metadata capture: This axis explores additional con-

textual information collected during workflow execution.
It covers methods for tracking workflow execution state,
documenting provenance, monitoring performance, and
detecting anomalies. These capabilities ensure that work-
flows can be reliably executed, optimized, debugged, and
reproduced.

Figure 1 provides an overview of the terms used for each
axis, and this section describes these terms in more detail. With
this terminology, we can describe a WMS based on a selection
of specific terms for each of the five identified axes. As sub-
terms within an axis are not mutually exclusive, a WMS may
be classified by a combination of sub-terms.

3



2.1. Workflow Characteristics

The first axis is more focused on the type of workflows a
workflow system can manage than on the characteristics of a
system itself, in other words, on what the workflow does. The
large number of existing WMSs [6] indicates that there is no
“one-size-fits-all” solution despite standardization and interop-
erability efforts [24]. In fact, the design and implementation
of workflows is significantly influenced by structural aspects
that are crucial to their efficiency, scalability, and adaptability.
In this section, we characterize broad classes of workflows ac-
cording to these defining features.

A prominent feature of a workflow is its flow, which has
a direct impact on how WMSs optimize workflow execution.
When workflow components receive inputs, process them, gen-
erate outputs, and then terminate, the workflow structure is de-
fined by the composition of these tasks. WMSs are then respon-
sible for orchestrating their execution, respecting their flow and
control dependencies. They will also implement optimization
strategies to improve workflow performance, such as minimiz-
ing the makespan or communication of the workflow. The dif-
ferent tasks that make up a workflow can also be executed mul-
tiple times in an iterative way. At each iteration, tasks are exe-
cuted, terminated, and then wait to be invoked again. The struc-
ture and execution of the workflow can also be driven by the
data flowing through the workflow components. These compo-
nents are data operators that remain alive while there is data to
process. In that case, WMSs aim to maximize the throughput
of the workflow.

The structure of workflows also differs by the granularity
of their individual tasks. Some workflows can compose some
function calls to perform complex processing tasks. To some
extent, a script or a program can be seen as a workflow and
a runtime system as a workflow system. The most common
definition of a workflow is a composition of standalone exe-
cutables, which aggregate multiple functions calls to perform
complex computations on a set of inputs and produce a set of
outputs. With the increase in scale and complexity of compu-
tational problems, it is now common to express workflows as a
hierarchical and modular composition of sub-workflows.

Another defining feature of workflows is the coupling of
the tasks that compose them. This term defines the dependen-
cies and interactions between the different tasks. The tight
coupling of some tasks indicates that these tasks must be ex-
ecuted concurrently, being co-located on the same computing
resources or running on different sets of processors. This is
often caused by periodic data exchanges between tasks while
they run. Conversely, a loose coupling of tasks does not im-
pose any constraint on the concurrent execution of tasks, giving
more flexibility to the WMS when scheduling the workflow.

The dynamicity of a workflow indicates its ability to mod-
ify its structure during its execution. Dynamic workflows can
comprise several conditional branches that are activated or
not depending on the realization of a predefined condition or
triggered by an external event. Such conditions can be related
to changes observed in the processed datasets (e.g., a variable
reaching a certain threshold, the convergence of an iterative pro-

cess is reached), to changes in the status or availability of com-
pute, network, or storage resources, or to time-related events
(e.g., it is too late to process a given execution path). Such
conditional branches allow workflows and WMSs to efficiently
react to changes and foster more robust, efficient, and flexi-
ble executions. A second type of dynamic behavior found in
workflows is when a runtime intervention is needed. In that
case, the workflow system gives the control back to the user
who started the workflow or to an automated external decision
process. Such interventions at runtime can modify the initial
execution plan of a workflow in different ways (e.g., rerun cer-
tain tasks or an entire sub-workflow, modify task configuration,
cut a given path or start exploring a new path, or trigger the
early termination of the entire workflow).

Finally, it is possible to distinguish WMSs with respect to
the domain they serve. Some systems are deeply rooted in a
scientific community and thus mainly target domain-specific
workflows, while others are more application-agnostic.

2.2. Composition
Composition refers mainly to how a workflow system al-

lows its users to describe the different components of the work-
flow, their configuration and input parameters, and the data and
control dependencies between these components. This axis also
covers the coupling between the description of the workflow it-
self and that of the targeted hardware and software infrastruc-
ture on which to execute the workflow.

We identified three subcategories of description methods
to compose a workflow. The first, schema, refers to the case
where the workflow is described in a text file, using a spe-
cific format (e.g., XML, JSON, YAML, or a domain-specific
language) and syntax. We further decompose this category to
distinguish that the syntax used by a WMS is ad-hoc, mean-
ing that it can only be understood by this particular WMS, or
part of a common standard shared by multiple WMSs, such as
the Common Workflow Language (CWL) [24], the Interopera-
ble Workow Intermediate Representation (IWIR) [25], or Wf-
Format [26]. Note that supporting a description standard may
not always be possible, for instance, when a WMS implements
significant features that cannot be easily expressed in the stan-
dard. The second subcategory includes WMSs that expose an
API to describe workflows. This API builds on or extends one
or more popular programming languages (e.g., Python, C++)
or a text templating engine (e.g., jinja) to leverage loops and
conditional statements and allow users to describe their work-
flows in a more compact and flexible way. The third subcate-
gory corresponds to WMSs that rely on a graphical user inter-
face (GUI).

Workflow composition can also be defined by the level of
abstraction of the description provided by the user. A high-
level abstract composition will only focus on describing the
logical structure of the task graph, a generic description of the
data flowing through the workflow, and the amount of resources
required by each component. This abstract description is gener-
ally independent of a specific instance of the workflow (i.e., that
specifies all input parameters and component configuration pa-
rameters) and of a specific target computing and storage infras-

4



tructure. The advantages of an abstract workflow composition
are that it favors the reusability and portability of the workflow.
However, it requires more effort from users or the workflow sys-
tem to execute a specific instance on a specific infrastructure.

Some systems have an intermediate-level abstract compo-
sition. They allow for a high-level workflow description while
requiring some execution details from the users. Systems with
intermediate-level abstraction provide users with a balance be-
tween automation and manual fine-tuning, which can be ad-
vantageous when the application requires a higher level of ex-
ecution control. This comes at the cost of lower portability
when compared to fully abstract systems and possible perfor-
mance trade-offs (e.g., the responsibility of allocation optimiza-
tion falls on the users in these systems).

Conversely, a concrete composition is more closely related
to an instance and an infrastructure. All parameters are speci-
fied in the description, and the workflow can be deployed and
run directly from it. Note that some WMSs allow to factor in-
frastructure related information as a separate description, allow-
ing users to port a workflow from one infrastructure to another
without changing the high- or intermediate-level abstract com-
position of the workflow itself.

When an API is used to describe a workflow, the composi-
tion is implicit as the workflow’s structure is derived from the
composition of the different function calls made by the user, or
from metadata attached to a dataset to process, indicating for
instance which files are needed and in what way.

Finally, we also distinguish composition methods with re-
gard to their modularity. With the evolution of scientific ap-
plications from relatively simple workflows (e.g., data process-
ing pipelines or fan-out/fan-in execution patterns for ensemble
runs) to more complex workflows composed of interconnected
sub-workflows (i.e., workflow of workflows), the composition
methods exposed by WMSs are also evolving from a flat de-
scription of a set of components to a more hierarchical descrip-
tion that enables modular and scalable design. This shift allows
for better management of large-scale applications, where indi-
vidual sub-workflows can be developed, tested, and optimized
independently before integration. It also allows researchers to
create new complex data analysis workflows by composing ex-
isting workflows developed in their community. However, such
hierarchical composition introduces new challenges, such as
dealing with an increased orchestration complexity, handling
dependencies across nested workflows, and efficiently manag-
ing resource allocation. To address these, WMSs provide fea-
tures such as parameterized workflow components and reusable
templates that facilitate modular workflow design while main-
taining scalability.

2.3. Orchestration
Orchestration refers to the method(s) employed by a work-

flow system to deploy, schedule, and execute the computational
components of a workflow. In this section, we focus on the gen-
eral functional features of WMSs rather than the specific techni-
cal details of their implementations. For instance, we leave op-
timization techniques, such as advanced, performance-oriented
scheduling and resource allocation techniques and algorithms,

out of the scope of this axis. However, we still consider it im-
portant to classify WMSs into three broad categories related to
execution planning. Some systems impose a static planning
of the workflow execution, i.e., all the decisions about when
and where each task composing the workflow is executed must
be taken before the execution starts. Conversely, some systems
can make or adapt scheduling and resource allocation decisions
during the execution of the workflow, hence implementing a dy-
namic planning strategy. (Note that certain systems implement-
ing static planning may emulate dynamic planning through hi-
erarchical workflows.) The third category encompasses WMSs
that do not plan the workflow execution in advance but rather let
the execution react to specific events and/or conditions that oc-
cur at runtime. In such event-driven execution, when a trigger
condition or event is met, the workflow system automatically
initiates subsequent, usually predefined, actions such as start-
ing new tasks, notifying users, and adjusting the resource allo-
cation. This type of automation minimizes manual intervention,
making the orchestration less error-prone.

We identified three categories for the actual execution of
the tasks that compose a workflow. WMSs might use one or
more orchestration methods (see Table 2) to execute a work-
flow. The runner orchestration method refers to WMSs that
are fully responsible for the acquisition of computing and stor-
age resources and the management of the individual tasks that
compose a workflow. It connects the high-level workflow def-
inition (i.e., its composition, see Section 2.2) to the available
resources. A runner system ensures that tasks execute in the
correct order, respecting their pre-defined control and flow de-
pendencies. It oversees the life cycle of a task from the time it
is dispatched and monitors it until it is completed according to
its specifications.

Other WMSs delegate resource allocation and part of the
management of the execution of individual tasks to a resource
manager. This orchestration method is typically used in HPC
systems where the allocation of compute nodes is handled by a
batch scheduler, or cloud systems, where container orchestra-
tion systems are used. The interactions between the workflow
system and the underlying resource managers encompass order-
ing queue of jobs to execute in an ensemble, controlling the re-
lease of limited quantities of tasks or data to not overwhelm the
underlying execution system, or implementing a pilot job [27]
mechanism to reduce the queuing overhead caused by schedul-
ing and executing tasks independently by grouping them within
the pilot allocation.

The last orchestration method relies on a serverless execu-
tion of tasks. This refers to a cloud-based model in which the
responsibility for infrastructure management, allocation scal-
ing, and job execution is entirely delegated to a cloud service
provider. A key distinction of this model is that the user or
WMS must first define one or more functions along with all
of their software dependencies, and then the WMS may exe-
cute those functions to carry out the workflow. The cloud plat-
form takes care of the provisioning and server management, ab-
stracting the underlying computing and storage infrastructure
entirely. In some cases, it can be the most cost effective or-
chestration method as users are usually only charged based on

5



the actual usage of computing resources rather than maintaining
servers always on, even when idle.

2.4. Data Management

The data management axis characterizes the way WMSs
transport, store, and manage the lifecycle of one of the key
components of scientific workflows: data. Before detailing the
different categories and terms related to data management, we
make an important distinction between two types of data, as
the way a workflow system manages each of them may differ.
Input/output data respectively refer to the data needed at the
beginning of the workflow and to the final outcomes of its ex-
ecution, while intermediate data denotes every piece of data
that did not exist before the beginning of the workflow and will
not be kept after the end of this execution.

A first way to distinguish WMSs according to how they
manage data is to consider the granularity at which these sys-
tems handle data management operations. A common approach
followed by many WMSs is to consider the data operations of
a workflow component at the granularity of a batch: all the
needed input data are consumed before performing computa-
tions and all the output data is produced, and made available
to subsequent components in the workflow, at the end of these
computations.

Another approach is to consider a pipelined granularity in
which workflow components periodically produce and/or con-
sume individual records during their entire lifecycle. This is
typically used to manage in situ processing workflows [28],
where analysis and visualization components are loosely cou-
pled to a main data producer (i.e., a numerical simulation). In
such workflows, data is consumed as it is produced, in opposi-
tion to a post-hoc approach in which analyses or visualization
happens once the full dataset has been generated.

A third intermediate granularity is to consider data as par-
titioned, i.e., divided in groups of individual records, and to
transfer these partitions across the workflow. This approach is
particularly useful when individual records are small. Consider-
ing them individually would be very latency-sensitive and could
negatively impact performance.

A second way to differentiate WMSs is by how they trans-
port data from one workflow component to another. Again, a
common approach is to rely on file-based transport, in which a
workflow component that produces intermediate data will write
them into a file(s) on a storage system. In contrast, a workflow
component that consumes intermediate data will read it from
file(s). An alternate approach is to directly stream interme-
diate data between components. Depending on the respective
allocations of the producing and consuming components, it is
possible to further refine these two broad approaches.

For WMSs that rely on the file-based transport approach,
we can further distinguish them according to the storage they
use. When workflow components are co-located on the same
compute node, the workflow system can leverage the existence
of a local file system, while when components are allocated
to different nodes of the same compute cluster or to different
clusters of the same computing facility, it will have to rely on a

shared file system. Commonly used in collaborative or high-
performance computing environments, shared file systems cor-
respond to a centralized model where data is accessible by mul-
tiple systems or nodes simultaneously. They bring several ad-
vantages when executing workflows, such as simple and collab-
orative access to a unified storage space or good cost efficiency.
They also come with different challenges, such as data consis-
tency, performance bottlenecks, scalability, or security, that a
WMS will have to face, and may address. In the extreme case
where the execution of a workflow is distributed over multiple
computing facilities, this approach can leverage a distributed
storage space. This involves managing and storing data across
multiple local and/or remote systems, enabling scalability, load
balancing, resilience, and flexibility. Although it can resolve
some issues of shared file systems, data consistency and secu-
rity challenges persist. Furthermore, the management of such
systems can be very complex, and data accesses may suffer
from high latencies. An alternative approach in that case would
be that the data-producing workflow components running in a
given facility create one or several additional transfer tasks to
send data to each their its data-consuming successors that run
in another facility. Another common practice in distributed and
shared systems targeted by WMSs is the use of replicated stor-
age, which focuses on creating redundant copies of data to im-
prove reliability, availability, and resilience. Such as the afore-
mentioned storage solutions, replicated storage struggles with
data consistency and complex data management, not to men-
tion the increased storage costs and the write overhead created
every time data needs to be updated.

For the stream-based transport approach, when the producer
and consumer are co-located on the same node, data transport
can be carried out in-memory through a shared address space.
Otherwise, it implies a network communication between the
nodes that respectively hosts the data producer and consumer.

2.5. Metadata Capture
The last axis of the terminology refers to the different cat-

egories of contextual information, or metadata, captured by
WMSs during a workflow execution. Metadata constitute a crit-
ical layer of information that describes, tracks, and contextual-
izes workflow aspects such as inputs/outputs, parameters, and
dependencies. Through the extra information, the workflow en-
gine can decide on the execution order based on the dependency
information, parallelize tasks, and schedule resources accord-
ing to the needs of the task. Therefore, metadata enables ef-
ficient orchestration, automation, long-term data management,
and resource optimization. By capturing descriptive execution
logs and storing full context results, metadata can improve trou-
bleshooting, debugging, and responsiveness. Overall, it can en-
sure scientific integrity, reproducibility, and reliability through-
out the workflow’s lifecycle.

Workflows are typically large and complex applications de-
signed for execution in distributed systems. Given their role in
critical research and high-impact projects, the ability to repro-
duce results enables others to validate the findings, build upon
previous work, and promote collaboration to further scientific
discovery.

6



A specific type of metadata is provenance data which
can be further decomposed into prospective and retrospective
provenance data. Prospective provenance corresponds to main-
taining detailed information about the workflow design and
structure, the configuration of the workflow system and the un-
derlying computing and storage infrastructure, and the specific
algorithms to be used and their parametrization. Prospective
provenance is essential to facilitate reproducibility, especially
for complex applications such as workflows [29]. Retrospective
provenance data corresponds to what actually happened to the
data processed by a workflow and captures everything related
to a specific execution. It is usually extracted from execution
logs to keep track of the data lineage (i.e., generation, transfor-
mation, and usage) and timestamps and runtime details. Ret-
rospective provenance is particularly useful for detecting any
deviation from the expected execution plan and is often used
for debugging purposes.

Another type of metadata captured during workflow exe-
cutions is monitoring of data, which comes from processes
that oversee the workflow execution in real time. The data
generated by monitoring provides critical insight into perfor-
mance, resource utilization, and potential bottlenecks. WMSs
can leverage it to dynamically reconsider an initial execution
plan by modifying resource allocations or scheduling decisions.
The monitoring data can also be analyzed by researchers after a
workflow execution to optimize the description of the workflow
itself to improve its efficiency.

The final category on this axis is related to anomaly de-
tection [30]. We consider that a workflow management system
supports anomaly detection if it captures metadata that can be
used to implement fault tolerance mechanisms. These mecha-
nisms vary in sophistication: Some systems terminate execution
and display an error message, while others complete the execu-
tion but log warnings about potentially incorrect data resulting
from unexpected behavior. There are even systems that can dis-
tinguish between anomalies that can be handled automatically
(e.g., task retries or by an optional branch from a task-failed
trigger) and anomalies that the workflow is not designed to han-
dle and thus require user intervention. In the latter case, the
scheduler remains alive on a timeout in a “stalled” state, await-
ing operator intervention.

3. Surveying Existing Workflow Systems

This section considers 23 WMSs that are part of the Work-
flows Community Initiative (WCI). This selection is motivated
by the fact that the WCI focuses on actively developed WMSs
with a large user base. We also ensured that the selection made
was not limited to a specific research community, a narrow set
of origin countries, or a certain category of supported work-
flows to avoid biases in the definition of our terminology. Al-
though this list represents only a small fraction of the vast num-
ber of existing WMSs [6] and is thus far from being exhaustive,
we believe that it is still representative of the diversity of the
available systems. Moreover, this initial list of analyzed sys-
tems is not definitive nor intended to be limited to WMSs affili-
ated to the WCI. We plan to make this terminology available on

the WCI website and broadly advertise its existence so that the
list of WMSs mapped to the terminology continues to grow.

For each WMS, we analyze their published work and in-
corporate feedback from community efforts over the past four
years. Table 1 summarizes the type of workflows each system
is able to execute, while Table 2 highlights the primary charac-
teristics of each system according to the axes and terms summa-
rized in Figure 1 and detailed in Section 2. Table 2 also includes
a column named extensions, which lists additional function-
alities that WMSs can support beyond their default configura-
tions. These extensions may include optional plugins, third-
party integrations, or interoperability with cloud-based storage
and computing resources.

Evolution of Workflow Characteristics. The evolution of
WMSs in the past two decades reflects significant changes in
computational approaches. Initially predominantly task-driven,
workflows have expanded to embrace data-driven processing
pipelines with the rise of big data. Modern workflows now
integrate both paradigms, particularly as AI becomes embed-
ded in research, enabling complex analytical pipelines that re-
spond dynamically to data while preserving the structured ex-
ecution needed for reproducibility. The growing complexity
of applications called for greater composability and modern
WMSs now support hierarchical sub-workflows and iterative
processes, which allows researchers to independently develop
and optimize components before integration. These systems
have also evolved to support more dynamic execution through
conditional branches, runtime interventions, and adaptive pro-
cessing. However, while technical capabilities continue to ex-
pand, the scientific domains supported by WMSs are often de-
termined more by social dynamics than by technical limitations.

The Social Dynamics of Workflow System Selection. While
the technical characteristics described in our terminology pro-
vide a foundation for evaluating WMSs, the actual selection
process in practice is often significantly based on social fac-
tors. Our community observations reveal that researchers fre-
quently choose WMSs based not solely on technical merits,
but on established social patterns and connections. When con-
fronted with multiple technically viable options, scientists typ-
ically gravitate toward systems already in use by their immedi-
ate collaborators, departmental colleagues, or disciplinary com-
munities. This preference for socially validated tools creates
adoption groups within research domains and institutions. The
perceived credibility of a workflow system is substantially en-
hanced when it appears in trusted publications or receives en-
dorsements from respected colleagues. In addition, institutional
knowledge transfer plays a crucial role, as existing expertise
and support infrastructures significantly lower the barrier to
adoption. These social dynamics create self-reinforcing adop-
tion patterns that can sometimes override purely technical con-
siderations, highlighting that workflow system selection exists
within a complex socio-technical ecosystem where community
practices, established knowledge bases, and trusted relation-
ships often determine final choices. Nevertheless, this under-
standing emphasizes why developing a common terminology
is particularly valuable, i.e., it provides a framework for dis-

7



Name Flow Granularity Coupling Dynamicity Domain

AiiDA [31] Task
Iterative

Sub-workflows
Executables
Functions

Loose Branches
Runtime intervention

Agnostic

AirFlow [32] Task Executables Loose Branches Agnostic
Apollo [33] Task

Data
Iterative

Functions
Sub-workflows

Loose Branches Agnostic

COMPSs [34] Task
Iterative

Functions
Sub-workflows
Executables

Loose Branches Agnostic

Cylc [35] Task
Iterative

Executables
Sub-workflows

Loose Branches
Runtime intervention

Agnostic

Dask [36] Data Executables Tight - Agnostic
EFFIS [37] Data Executables Tight

Loose
- Specific

FireWorks [38] Task Sub-workflows Tight Branches Agnostic
Galaxy [39] Data Executables

Sub-workflows
Loose Branches

Runtime intervention
Agnostic

Globus Compute [40] Data Functions
Executables

Loose - Agnostic

HyperFlow [41] Data Functions
Executables

Loose - Agnostic

Makeflow [42] Data Sub-workflows Loose - Agnostic
Merlin [43] Task

Iterative
Sub-workflows Loose - Agnostic

MLFlow [44] Task
Iterative

Executables Loose - Specific

Nextflow [45] Data Sub-workflows Loose Branches Agnostic
Parsl [46] Data Sub-workflows Loose Branches Agnostic
Pegasus [47] Data Sub-workflows

Executables
Loose Branches Agnostic

Radical [48] Task
Iterative

Functions Tight - Agnostic

Snakemake [49] Task
Iterative

Sub-workflows
Executables
Functions

Loose
Tight

Branches Agnostic

StreamFlow [50] Task
Data
Iterative

Sub-workflows
Executables

Loose Branches Agnostic

Swift/T [51] Task
Data

Functions Tight Branches
Recursion

Agnostic

TaskVine [52] Task
Iterative

Functions
Executables

Loose - Agnostic

Toil [53] Data Sub-workflows Loose Branches Agnostic

Table 1: Classification of workflow management systems based on structure and characteristics.This classification represents the state at the time of publication, to
the best of the authors knowledge. As many of the presented WMSs constantly evolve, we suggest the reader to explore their respective documentation to get an
up-to-date view of their capabilities and characteristics.

cussing technical aspects objectively while acknowledging the
legitimate influence of social factors on technology adoption.

Emerging Patterns in Modern Workflow Systems. Several sig-
nificant trends are reshaping the landscape of WMSs. The tradi-
tional schema-based approach to workflow composition is giv-
ing way to API-driven interfaces, reflecting broader program-
ming paradigm shifts and resulting in less abstract, more pro-

grammatic workflow descriptions. This transition enables finer
control over workflow execution while sometimes sacrificing
portability across environments. Simultaneously, WMSs are
increasingly addressing the need for dynamic execution capa-
bilities, responding to growing demands from scientific appli-
cations that require adaptive runtime behaviors and conditional
processing paths. Data management approaches are also evolv-

8



Composition Orchestration Data Management Metadata
Name Description Abstraction Modularity Planning Execution Transport Storage Capture Extensions

AiiDA API Intermediate Hierarchical Dynamic Runner File-based Shared Anomaly
Provenance

Plugins
Caching
Fault tolerance
HPC execution

AirFlow API Intermediate Flat Static Runner Stream Shared Monitoring Dynamic pipelines
Apollo Ad-hoc Schema Abstract Hierarchical Dynamic Resource

Manager
Serverless

Stream Distributed Monitoring Container/serverless
Multi-cloud
Edge/cloud
Multi-objective scheduling

COMPSs API Intermediate Flat
Hierarchical

Dynamic Resource
Manager
Serverless

Stream
File-based

Local
Shared
Distributed

Anomaly
Monitoring
Provenance

Adaptive resource
allocation
HPC scalable
Replicated storage

Cylc Ad-hoc Schema
API/templating

Concrete Flat
Hierarchical

Static
Event-
driven

Runner
Resource-
manager

File-based Shared Anomaly
Provenance
Monitoring

HPC Execution
Plugins
Config templating

Dask API Concrete Flat Dynamic Runner Stream Shared
Distributed

Anomaly
Monitoring
Metadata

Python Libraries
Cluster Management
GPU Accel.

EFFIS API Intermediate Flat Dynamic Resource
Manager

Stream
File-based

Shared
Distributed
Replicated

Anomaly
Monitoring

FireWorks API
Ad-hoc Schema

Intermediate Hierarchical Dynamic Resource
Manager

File-based Shared
Replicated

Anomaly
Monitoring
Provenance

Multi-platform execution

Galaxy GUI
Ad-hoc Schema

Concrete Flat Event-
Driven

Runner Stream Shared Anomaly
Monitoring
Provenance

External Tools
Execution API

Globus
Compute

API Abstract Hierarchical Dynamic Resource
Manager
Serverless

Stream
File-based

Shared Anomaly
Monitoring

Distributed storage

HyperFlow Ad-hoc Schema Intermediate Flat Static
Dynamic

Runner Stream Shared
Distributed

Provenance Replicated storage
Cloud Integration
Scalability

Makeflow Standard
(Make)

Abstract Hierarchical Static Runner File-based Shared
Replicated

Anomaly
Monitoring
Provenance

Distributed storage
HPC execution

Merlin Ad-hoc Schema Intermediate Hierarchical Static Runner File-based Shared
Distributed
Replicated

Anomaly
Monitoring
Provenance

Cloud-native Support

MLFlow API Intermediate Flat Static Runner File-based
Stream

Shared
Distributed

Monitoring

NextFlow Ad-hoc Schema Abstract Hierarchical Dynamic Runner Stream
File-based

Shared
Distributed

Anomaly
Monitoring
Provenance

Replicated storage
Container/Cloud Support
HPC execution

Parsl API Abstract Hierarchical Dynamic Runner Stream
File-based

Shared
Distributed

Anomaly
Monitoring

Replicated storage
Dynamic Parallelization
Cloud/Grid Support

Pegasus Ad-hoc Schema
API

Abstract Hierarchical Static Runner File-based Shared
Distributed

Anomaly
Monitoring
Provenance

Replicated storage
Multi-level Scheduling

Radical API Abstract Hierarchical Static Resource
Manager

File-based Shared
Distributed

Anomaly
Monitoring
Provenance
Metadata

Replicated storage
Scalable

Snakemake Ad-hoc Schema Abstract Flat
Hierarchical

Static
Dynamic
Event-
driven

Runner File-based Shared
Distributed

Anomaly
Monitoring
Provenance

Plugins
Scripting integration
Software deployment inte-
gration
Interactive reporting

StreamFlow Standard
(CWL)

Abstract Hierarchical Dynamic Runner
Resource
Manager

File-based Distributed Anomaly
Provenance

Replicated storage
Cloud Integration

Swift/T Ad-hoc Schema High-level Flat Dynamic Resource
Manager

Stream
File-based

Shared Anomaly
Monitoring

Local Storage [54]
AI/ML Control [55]
Parallel Tasks [56]

Taskvine API Intermediate Flat Dynamic Resource
Manager

File-Based Shared
Distributed
Replicated

Anomaly
Monitoring
Provenance

Serverless
Autoscaling
HPC Execution
Recoverable storage

Toil Standard
(CWL/WDL)

Abstract Hierarchical Static Runner Stream
File-based

Shared
Distributed

Anomaly
Monitoring
Provenance

Replicated storage
Multi-Cloud Support

Table 2: Categorization of various workflow systems with respect to their composition, orchestration, data management, and information capture. In addtion, the
last column highlights exemplary extensions provided beyond this common terminology. This classification represents the state at the time of publication, to the best
of the authors knowledge. As many of the presented WMSs constantly evolve, we suggest the reader to explore their respective documentation to get an up-to-date
view of their capabilities and characteristics.

9



ing in response to the explosive growth in data volumes and
velocity; While file-based transport remains common, stream-
ing approaches are gaining traction for near real-time process-
ing needs. When file handling is required, modern WMSs
must navigate complex storage hierarchies and scale horizon-
tally across distributed storage locations to maintain perfor-
mance. These trends collectively point toward more sophisti-
cated and flexible systems that can adapt to diverse scientific
computing requirements while managing increasingly complex
data ecosystems.

From Extensions to Building Blocks. As WMSs mature, de-
velopers increasingly extend their native capabilities through
additional components that address specific needs. This ex-
pansion has led to growing system complexity, challenging de-
velopers to maintain modular architecture and avoid unwieldy
monolithic designs. Rather than each system independently im-
plementing similar functionalities, a promising approach for
the workflow community involves identifying and develop-
ing shared building blocks, reusable components that provide
common services across different WMSs [48, 57, 58]. This
community-based approach to the development of modular and
interoperable components [58] could significantly reduce dupli-
cation of efforts while improving sustainability and adoption.
Such standardized building blocks would address fundamen-
tal workflow needs like resource management, data movement,
provenance tracking, and fault tolerance, allowing individual
systems to focus on their unique strengths and domain-specific
optimizations. The emergence of these community-maintained
components represents a potential path toward consolidation in
a currently fragmented ecosystem of over 300 WMSs, promot-
ing interoperability while preserving the specialized capabili-
ties that particular scientific domains require.

Workflow Registries in the Scientific Workflow Ecosystem. In
addition to the WMSs themselves, the scientific community
has developed various workflow registries that serve as cen-
tralized locations to share, discover, and reuse workflow def-
initions in the workflow ecosystem. These registries comple-
ment WMSs by facilitating knowledge exchange and promot-
ing best practices across research domains. The nf-core [59]
repository provides community-maintained curated Nextflow
workflows for bioinformatics with continuous integration to en-
sure reproducibility. Similarly, the SnakeMake workflow cata-
log [60] offers domain-specific collections. WorkflowHub [61]
provides a unified registry for all computational workflows that
links to community repositories, making workflows findable,
accessible, interoperable, and reusable (FAIR) according to the
FAIR principles for workflows [62]. Unlike single-language
workflow registries such as nf-core, the AiiDA plugin reg-
istry [63], and Galaxy Toolshed [64] that are associated with
specific workflow platforms, WorkflowHub accepts workflows
from any scientific domain, in any format and in any workflow
language. Repositories such as Dockstore [65] improve repro-
ducibility by combining containers, descriptor languages, and
test parameter files to simplify software reuse and dependency
management. Dockstore has facilitated large-scale biomedical
research collaborations by using cloud technologies to increase

the FAIRness of computational resources. WfInstances [26]
is a key component of the WfCommons project that archives
real-world workflow instances collected from workflow execu-
tions using various runtime systems. The repository ecosystem
represents an important extension of the workflow landscape,
bridging technical capabilities with community practices, and
helping scientists navigate the complex decision space of work-
flow selection and reuse while promoting the recognition of
workflows as artifacts.

4. Process to Define the Terminology of Workflow Systems

The terminology for scientific workflow systems presented
in this paper emerged from a systematic, community-driven ap-
proach initiated in 2021 through the Workflows Community
Initiative (WCI) [17]. This collaborative effort united work-
flow system developers, domain scientists, and workflow prac-
titioners in diverse scientific disciplines and computing facil-
ities. Through a series of Workflows Community Summit
events [18–23], participants engaged in structured discussions
about key aspects of scientific workflow systems, including es-
sential features, challenges in interoperability, data manage-
ment approaches for execution models and reproducibility re-
quirements. These discussions were documented in technical
reports that captured the evolving understanding of WMSs and
established the foundations for a unified terminology, drawing
inspiration from similar efforts in the in situ processing com-
munity [16].

The development of the terminology progressed through
several phases, beginning with an analysis of summit reports
and the existing literature on workflow taxonomies [7–15] to
identify common patterns and classification schemes. A core
working group then conceptualized the framework around five
distinct axes to comprehensively cover the key aspects of work-
flows and WMSs, followed by the creation of a draft document
defining these axes and their associated terms. This draft in-
cluded an initial characterization of 23 representative WMSs
and was circulated to workflow system developers and key
stakeholders for critical feedback. Through multiple iterations
of refinement based on community input, the working group
adjusted definitions, added missing terms, and ensured that the
terminology accurately represented the domain’s complexity
while remaining both comprehensible and practical. The termi-
nology was validated by applying it to classify the WMSs listed
in Table 2, confirming its applicability while revealing its abil-
ity to highlight commonalities and distinctions among diverse
systems.

Throughout this process, the working group adhered to the
principles of comprehensiveness, accessibility, neutrality, open-
ness, and practicality. The terminology needed to cover the full
spectrum of workflow system features without favoring partic-
ular implementation approaches, while remaining understand-
able to both experts and domain scientists. It was designed to be
descriptive rather than prescriptive, avoiding implications that
certain approaches were inherently superior and flexible enough
to accommodate future innovations through the addition of new
terms within the established axes. The resulting terminology,

10



as detailed in Section 2 and applied in Section 3, represents
the collective expertise of a broad community of workflow re-
searchers and practitioners, providing a common language for
discussing and comparing WMSs that facilitates both scientific
communication and informed decision-making when selecting
workflow technologies for specific research needs.

5. Related Work

Over the past two decades, the scientific workflow com-
munity has proposed several taxonomies to structure the de-
sign space of WMSs. Early taxonomies introduced classifi-
cation schemes based on architectural and infrastructural fea-
tures, including workflow representation models (e.g., DAGs
versus non-DAGs), scheduling strategies (i.e., centralized, de-
centralized, or hierarchical), fault tolerance mechanisms (e.g.,
task retries, checkpointing, alternate resource usage), and data
movement techniques (e.g., file staging, replication, stream-
ing) [7]. These taxonomies highlighted trade-offs between per-
formance, fault resilience, and scalability across grid environ-
ments. Later frameworks organized WMS features accord-
ing to the workflow lifecycle, encompassing composition inter-
faces (e.g., graphical editors, scripting APIs, domain-specific
languages), resource mapping mechanisms (i.e., manual bind-
ing versus automated planners), execution engines (i.e., static
versus dynamic schedulers), and provenance capture strate-
gies (i.e., retrospective and prospective metadata logging) [9].
These classifications helped emphasize usability and repro-
ducibility as central design goals. More recent comparative
analyses have expanded the evaluation criteria to cover sup-
port for heterogeneous execution models (including iterative,
streaming, and conditionally adaptive workflows), deployment
flexibility across HPC, cloud, and hybrid environments, and
mechanisms for handling large-scale, data-intensive workloads
with performance-aware orchestration and optimized I/O strate-
gies [8, 12, 13], or focusing on specific features such as fault
tolerance [14] or provenance [15]. Such studies increasingly
incorporate practical interoperability, expressiveness, and us-
ability assessments to guide system selection in data-intensive
scientific domains.

These taxonomies have provided valuable frameworks for
evaluating and selecting WMSs, but they often emphasize ei-
ther infrastructure-level capabilities or comparisons based on
the workflow lifecycle. This paper contributes a complemen-
tary approach by proposing a terminology instead of defin-
ing yet another hierarchical taxonomy. The objectives are
to offer a vocabulary that captures the essential properties of
WMSs in a flexible and non-prescriptive manner, support con-
sistent descriptions across heterogeneous systems, and help re-
searchers express requirements and understand systems’ capa-
bilities more precisely. Thus, what distinguishes this work is its
focus on standardizing language rather than classification alone.
By moving away from rigid taxonomies and toward shared
terms, we expect to enable clearer communication across do-
mains and stakeholder groups, and support the design, compar-
ison, and integration of next-generation WMSs. Grounded in

broad community consensus, the proposed set of terms over-
laps with the existing taxonomies, which shows its capacity
to capture the main features of classical WMSs. However,
it also reflects the evolution of workflow practices, with new
terms including dynamic execution behaviors, modular reuse,
and serverless orchestration models.

6. Conclusion

In this paper, we have introduced a new terminology for
scientific workflow systems. This terminology comprises five
axes along which a workflow system can be characterized.
Each axis is then refined via multiple associated terms. The
development of this terminology is a community-based effort
rooted in and supported by the Workflows Community Initia-
tive (WCI). It summarizes the collective thinking of WMS de-
velopers and members of the leadership and steering commit-
tees of the Workflows Community Initiative and reflects the
achieved consensus around an initial set of terms. The main
motivation for this work is to serve as a starting point for a uni-
formly understood vocabulary that would help workflow practi-
tioners navigate the vast market of WMSs. To this end, we used
this terminology to characterize a selection of existing WMSs,
identify similarities and differences, and highlight some broad
trends. This approach brought in many different perspectives
and ensured that diverse perspectives were taken into account.
It also provides this terminology with solid foundations and the
backing of a significant number of workflow system developers
and workflow practitioners. This will allow us to expose and
explain the terminology to the respective user communities of
the analyzed frameworks and foster its broader adoption. We
also plan to gather and analyze user feedback and monitor the
adoption of the terminology to conduct an empirical validation
of the benefits of the proposed terminology. A concrete met-
ric of success for the adoption of the terminology will be to
be referred to in scientific articles, not by citing this paper but
by using the terminology to describe a WMS or a workflow and
position contributions using a uniformly understood vocabulary
accepted by a broad community.

This terminology should not be considered static. As new
systems are developed and new trends emerge from the com-
munity, new terms and axes may be introduced. A new work-
ing group of the WCI will be formed, which will include this
paper’s co-authors to ensure that the terminology evolves and
keeps reflecting the state of the field. This group will also be
in charge of extending the list of characterized WMSs beyond
those that are part of the Workflows Community Initiative.

Acknowledgments

The authors express their deepest appreciation for the in-
sightful review and comments from Khalid Belhajjame of
the University Paris-Dauphine (France); Luiz Gadelha of the
German Cancer Research Center (DKFZ, Germany); Johan
Gustafsson of Australian BioCommons and Sehrish Kanwal of
the Centre for Cancer Research at the University of Melbourne

11



(Australia); and Mahnoor Zulfiqar and Stuart Owen of the Uni-
versity of Manchester (United Kingdom).

This research used resources of the Oak Ridge Leader-
ship Computing Facility at the Oak Ridge National Labora-
tory, supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.
BSC authors acknowledge projects CEX2021-001148-S and
PID2023-147979NB-C21 from the MCIN/AEI and MICI-
U/AEI /10.13039/501100011033 and by FEDER, UE, and by
the Departament de Recerca i Universitats de la Generalitat
de Catalunya, research group MPiEDist (2021 SGR 00412).
Ewa Deelman is funded by the U.S. Department of Energy un-
der grant No. DE-SC0024387 and by the U.S. National Sci-
ence Foundation under grant No. 2138286. This work was
performed under the auspices of the US Department of En-
ergy (DOE) by Lawrence Livermore National Laboratory un-
der Contract DE-AC52-07NA27344. This work has been sup-
ported by the LDRD at Lawrence Livermore National Lab-
oratory (24-SI-005), LLNL Release number: LLNL-JRNL-
2007841. Giovanni Pizzi acknowledges financial support from
the NCCR MARVEL, a National Centre of Competence in
Research, funded by the Swiss National Science Foundation
(grant number 205602), by the Open Research Data Program of
the ETH Board (project “PREMISE”: Open and Reproducible
Materials Science Research) and by the SwissTwins project,
funded by the Swiss State Secretariat for Education, Research
and Innovation (SERI). Bartosz Balis is funded by the European
Union through the Horizon Europe CLOUDSTARS project
(101086248). Douglas Thain acknowledges support from Na-
tional Science Foundation Grant OCI-2411436. Thain, Chard,
Jha, and da Silva acknowledge support from National Science
Foundation grant TIP-2346119.

References

[1] S. Williams, Business Process Modelling Improves Administrative Con-
trol, Automation (1967) 44–50.

[2] J. Wiener, Y. Ioannidis, A Moose and a Fox Can Aid Scientists with
Data Management Problems, in: Proceedings of the Fourth International
Workshop on Database Programming Languages, 1994, pp. 376–398.
doi:10.1007/978-1-4471-3564-7_21.

[3] J. Wainer, M. Weske, G. Vossen, C. B. Medeiros, Scientific Workflow
Systems, in: Proceedings of the NSF Workshop on Workflow and Process
Automation Information Systems, 1996.

[4] A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W. Scacchi,
J. Wileden, A. Wolf, Report from the NSF Workshop on Workflow and
Process Automation in Information Systems, ACM SIGMOD Record 25
(1996) 55–67. doi:10.1145/245882.245903.

[5] R. M. Badia Sala, E. Ayguadé Parra, J. J. Labarta Mancho, Workflows for
science: A challenge when facing the convergence of hpc and big data,
Supercomputing frontiers and innovations 4 (1) (2017) 27–47.

[6] P. Amstutz, M. Mikheev, M. Crusoe, N. Tijanić, S. Lampa,
et al., Existing Workflow systems, [Online] https://s.apache.org/
existing-workflow-systems, updated 2025-03-17, accessed 2025-
04-23 (2024).

[7] J. Yu, R. Buyya, A Taxonomy of Scientific Workflow Systems for
Grid Computing, SIGMOD Rec. 34 (3) (2005) 44–49. doi:10.1145/

1084805.1084814.
[8] R. Ferreira da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou,

E. Deelman, A Characterization of Workflow Management Systems for
Extreme-Scale Applications, Future Generation Computer Systems 75
(2017) 228–238. doi:10.1016/j.future.2017.02.026.

[9] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-Science:
An overview of Workflow System Features and Capabilities, Future Gen-
eration Computer Systems 25 (5) (2009) 528–540. doi:10.1016/j.

future.2008.06.012.
[10] J. Liu, E. Pacitti, P. Valduriez, M. Mattoso, A Survey of Data-Intensive

Scientific Workflow Management, Journal of Grid Computing 13 (4)
(2015) 457–493. doi:10.1007/s10723-015-9329-8.

[11] E. M. Bahsi, E. Ceyhan, T. Kosar, Conditional Workflow Management:
A Survey and Analysis, Scientific Programming 15 (4) (2007) 680291.
doi:10.1155/2007/680291.

[12] A. D. Kiran, M. C. Ay, J. Allmer, Criteria for the evaluation of workflow
management systems for scientific data analysis, Journal of Bioinformat-
ics Systems Biology 6 (2) (2023) 16–31.

[13] Z. Ahmad, A. I. Jehangiri, M. A. Ala’anzy, M. Othman, R. Latip, S. K. U.
Zaman, A. I. Umar, Scientific Workflows Management and Scheduling in
Cloud Computing: Taxonomy, Prospects, and Challenges, IEEE Access
9 (2021) 53491–53508. doi:10.1109/ACCESS.2021.3070785.

[14] D. Poola, M. A. Salehi, K. Ramamohanarao, R. Buyya, Chapter 15 -
A Taxonomy and Survey of Fault-Tolerant Workflow Management Sys-
tems in Cloud and Distributed Computing Environments, in: I. Mistrik,
R. Bahsoon, N. Ali, M. Heisel, B. Maxim (Eds.), Software Architec-
ture for Big Data and the Cloud, Morgan Kaufmann, Boston, 2017, pp.
285–320. doi:https://doi.org/10.1016/B978-0-12-805467-3.
00015-6.

[15] S. M. Serra da Cruz, M. L. M. Campos, M. Mattoso, Towards a Tax-
onomy of Provenance in Scientific Workflow Management Systems, in:
2009 Congress on Services - I, 2009, pp. 259–266. doi:10.1109/

SERVICES-I.2009.18.
[16] H. Childs, S. Ahern, J. Ahrens, A. Bauer, J. Bennett, et al., A Terminology

for in situ Visualization and Analysis Systems, International Journal of
High-Performance Computing and Applications 34 (6) (2020) 676–691.
doi:10.1177/1094342020935991.

[17] Workflows Community Initiative, [Online, last accessed 03/2025]
https://workflows.community (2025).

[18] R. Ferreira da Silva, H. Casanova, K. Chard, I. Altintas, R. M. Badia,
B. Balis, T. a. Coleman, F. Coppens, F. Di Natale, B. Enders, T. Fahringer,
R. Filgueira, G. Fursin, D. Garijo, C. Goble, D. Howell, S. Jha, D. S.
Katz, D. Laney, U. Leser, M. Malawski, K. Mehta, L. Pottier, J. Ozik,
J. L. Peterson, L. Ramakrishnan, S. Soiland-Reyes, D. Thain, M. Wolf,
A community roadmap for scientific workflows research and develop-
ment, in: Proceedings of the IEEE Workshop on Workflows in Support
of Large-Scale Science, 2021, pp. 81–90. doi:10.1109/WORKS54523.
2021.00016.

[19] R. Ferreira da Silva, H. Casanova, K. Chard, T. Coleman, D. Laney,
D. Ahn, S. Jha, D. Howell, S. Soiland-Reys, I. Altintas, et al., Workflows
community summit: Advancing the state-of-the-art of scientific work-
flows management systems research and development, arXiv preprint
arXiv:2106.05177 (2021).

[20] R. Ferreira da Silva, H. Casanova, K. Chard, D. Laney, D. Ahn, S. Jha,
C. Goble, L. Ramakrishnan, L. Peterson, B. Enders, et al., Workflows
community summit: Bringing the scientific workflows community to-
gether, arXiv preprint arXiv:2103.09181 (2021).

[21] R. Ferreira Da Silva, K. Chard, H. Casanova, D. Laney, D. Ahn, S. Jha,
W. E. Allcock, G. Bauer, D. Duplyakin, B. Enders, et al., Workflows
Community Summit: Tightening the Integration Between Computing
Facilities and Scientific Workflows, arXiv preprint arXiv:2201.07435
(2022).

[22] R. Ferreira da Silva, R. M. Badia, V. Bala, D. Bard, T. Bremer, I. Buck-
ley, S. Caino-Lores, K. Chard, C. Goble, S. Jha, D. S. Katz, D. Laney,
M. Parashar, F. Suter, N. Tyler, T. Uram, I. Altintas, et al., Work-
flows Community Summit 2022: A Roadmap Revolution, Tech. Rep.
ORNL/TM-2023/2885, Oak Ridge National Laboratory (Mar. 2023).
doi:10.5281/zenodo.7750670.

[23] R. Ferreira Da Silva, D. Bard, K. Chard, S. De witt, I. Foster, T. Gibbs,
C. Goble, W. Godoy, J. Gustafsson, U.-U. Haus, et al., Workflows Com-
munity Summit 2024: Future Trends and Challenges in Scientific Work-
flows, Tech. rep., Oak Ridge National Laboratory (ORNL) (10 2024).
doi:10.2172/2474744.

[24] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanić,
H. Ménager, S. Soiland-Reyes, B. Gavrilović, C. Goble, et al., Meth-
ods included: standardizing computational reuse and portability with the

12

https://doi.org/10.1007/978-1-4471-3564-7_21
https://doi.org/10.1145/245882.245903
https://s.apache.org/existing-workflow-systems
https://s.apache.org/existing-workflow-systems
https://doi.org/10.1145/1084805.1084814
https://doi.org/10.1145/1084805.1084814
https://doi.org/10.1016/j.future.2017.02.026
https://doi.org/10.1016/j.future.2008.06.012
https://doi.org/10.1016/j.future.2008.06.012
https://doi.org/10.1007/s10723-015-9329-8
https://doi.org/10.1155/2007/680291
https://doi.org/10.1109/ACCESS.2021.3070785
https://doi.org/https://doi.org/10.1016/B978-0-12-805467-3.00015-6
https://doi.org/https://doi.org/10.1016/B978-0-12-805467-3.00015-6
https://doi.org/10.1109/SERVICES-I.2009.18
https://doi.org/10.1109/SERVICES-I.2009.18
https://doi.org/10.1177/1094342020935991
https://workflows.community
https://doi.org/10.1109/WORKS54523.2021.00016
https://doi.org/10.1109/WORKS54523.2021.00016
https://doi.org/10.5281/zenodo.7750670
https://doi.org/10.2172/2474744


common workflow language, Communications of the ACM 65 (6) (2022)
54–63.

[25] K. Plankensteiner, J. Montagnat, R. Prodan, IWIR: a language enabling
portability across grid workflow systems, in: Proceedings of the 6th
Workshop on Workflows in Support of Large-Scale Science, 2011, p.
97–106. doi:10.1145/2110497.2110509.

[26] T. Coleman, H. Casanova, L. Pottier, M. Kaushik, E. Deelman, R. Fer-
reira da Silva, WfCommons: A Framework for Enabling Scientific Work-
flow Research and Development, Future Generation Computer Systems
128 (2022) 16–27. doi:10.1016/j.future.2021.09.043.

[27] M. Turilli, M. Santcroos, S. Jha, A Comprehensive Perspective on Pilot-
Job Systems, ACM Computing Surveys 51 (2) (Apr. 2018). doi:10.

1145/3177851.
URL https://doi.org/10.1145/3177851

[28] S. Caino-Lores, M. Cuendet, J. Marquez, E. Kots, T. Estrada, E. Deel-
man, H. Weinstein, M. Taufer, Runtime Steering of Molecular Dynamics
Simulations Through In Situ Analysis and Annotation of Collective Vari-
ables, in: Proceedings of the Platform for Advanced Scientific Computing
Conference, ACM, 2023. doi:10.1145/3592979.3593420.

[29] S. Leo, M. R. Crusoe, L. Rodrı́guez-Navas, R. Sirvent, A. Kanitz,
P. De Geest, R. Wittner, L. Pireddu, D. Garijo, J. M. Fernández, et al.,
Recording provenance of workflow runs with RO-Crate, PLoS ONE
19 (9) (2024) e0309210.

[30] K. Raghavan, G. Papadimitriou, H. Jin, A. Mandal, M. Kiran, P. Bal-
aprakash, E. Deelman, Advancing Anomaly Detection in Computational
Workflows with Active Learning, Future Generation Computer Systems
166 (2025) 107608. doi:10.1016/j.future.2024.107608.

[31] S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. Häuselmann,
D. Gresch, T. Müller, A. V. Yakutovich, C. W. Andersen, F. F. Ramirez,
C. S. Adorf, F. Gargiulo, S. Kumbhar, E. Passaro, C. Johnston, A. Merkys,
A. Cepellotti, N. Mounet, N. Marzari, B. Kozinsky, G. Pizzi, AiiDA
1.0, a scalable computational infrastructure for automated reproducible
workflows and data provenance, Scientific Data 7 (1) (2020) 300. doi:

10.1038/s41597-020-00638-4.
[32] P. Singh, Airflow, Apress, Berkeley, CA, 2019, pp. 67–84. doi:10.

1007/978-1-4842-4961-1_4.
[33] F. Smirnov, C. Engelhardt, J. Mittelberger, B. Pourmohseni, T. Fahringer,

Apollo: Towards an Efficient Distributed Orchestration of Serverless
Function Compositions in the Cloud-Edge Continuum, in: Proceedings
of the 14th IEEE/ACM International Conference on Utility and Cloud
Computing, 2021, pp. 1–10.

[34] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez, F. Marozzo,
D. Lezzi, R. Sirvent, D. Talia, R. M. Badia, Servicess: An Interoperable
Programming Framework for the Cloud, Journal of grid computing 12
(2014) 67–91.

[35] H. Oliver, M. Shin, D. Matthews, O. Sanders, S. Bartholomew, A. Clark,
B. Fitzpatrick, R. van Haren, R. Hut, N. Drost, Workflow automation for
cycling systems, Computing in Science & Engineering 21 (4) (2019) 7–
21. doi:10.1109/MCSE.2019.2906593.

[36] M. Rocklin, et al., Dask: Parallel computation with blocked algorithms
and task scheduling., in: SciPy, 2015, pp. 126–132.

[37] E. Suchyta, S. Klasky, N. Podhorszki, M. Wolf, A. Adesoji, C. Chang,
J. Choi, P. Davis, J. Dominski, S. Ethier, I. Foster, K. Germaschewski,
B. Geveci, C. Harris, K. Huck, Q. Liu, J. Logan, K. Mehta, G. Merlo,
S. Moore, T. Munson, M. Parashar, D. Pugmire, M. Shephard, C. Smith,
P. Subedi, L. Wan, R. Wang, S. Zhang, The Exascale Framework for High
Fidelity coupled Simulations (EFFIS): Enabling Whole Device Modeling
in Fusion Science, International Journal of High Performance Computing
and Applications 36 (1) (2022) 106–128.

[38] A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher, M. Braf-
man, G. Petretto, G.-M. Rignanese, G. Hautier, D. Gunter, K. Persson,
FireWorks: a Dynamic Workflow System Designed for High-Throughput
Applications, Concurrency and Computation: Practice and Experience
27 (17) (2015) 5037–5059. doi:10.1002/cpe.3505.

[39] J. Goecks, A. Nekrutenko, J. Taylor, G. T. team@ galaxyproject. org,
Galaxy: a comprehensive approach for supporting accessible, repro-
ducible, and transparent computational research in the life sciences,
Genome biology 11 (2010) 1–13.

[40] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik, I. Fos-
ter, K. Chard, Funcx: A federated function serving fabric for science, in:
Proceedings of the 29th International symposium on high-performance

parallel and distributed computing, 2020, pp. 65–76.
[41] B. Balis, HyperFlow: A Model of Computation, Programming Ap-

proach and Enactment Engine for Complex Distributed Workflows, Fu-
ture Generation Computer Systems 55 (2016) 147–162. doi:10.1016/
j.future.2015.08.015.

[42] M. Albrecht, P. Donnelly, P. Bui, D. Thain, Makeflow: a Portable Ab-
straction for Data Intensive Computing on Clusters, Clouds, and Grids, in:
Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies, 2012. doi:10.1145/2443416.

2443417.
[43] J. L. Peterson, B. Bay, J. Koning, P. Robinson, J. Semler, J. White,

R. Anirudh, K. Athey, P.-T. Bremer, F. Di Natale, D. Fox, J. Gaffney,
S. Jacobs, B. Kailkhura, B. Kustowski, S. Langer, B. Spears, J. Thiagara-
jan, B. Van Essen, J.-S. Yeom, Enabling Machine Learning-Ready HPC
Ensembles with Merlin (2021). doi:10.48550/arXiv.1912.02892.

[44] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski,
S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, et al., Accelerating
the machine learning lifecycle with mlflow., IEEE Data Eng. Bull. 41 (4)
(2018) 39–45.

[45] P. Di Tommaso, M. Chatzou, E. Floden, P. Prieto Barja, E. Palumbo,
C. Notredame, Nextflow Enables Reproducible Computational Work-
flows, Nature Biotechnologies 35 (4) (2017) 316–319. doi:10.1038/

nbt.3820.
[46] Y. Babuji, A. Woodard, Z. Li, D. Katz, B. Clifford, R. Kumar, L. Lacin-

ski, R. Chard, J. Wozniak, I. Foster, M. Wilde, K. Chard, Parsl: Perva-
sive Parallel Programming in Python, in: Proceedings of the 28th ACM
International Symposium on High-Performance Parallel and Distributed
Computing, 2019, pp. 25–36.

[47] E. Deelman, K. Vahi, M. Rynge, R. Mayani, R. Ferreira da Silva, G. Pa-
padimitriou, M. Livny, The Evolution of the Pegasus Workflow Manage-
ment Software, Computing in Science & Engineering 21 (4) (2019) 22–
36. doi:10.1109/MCSE.2019.2919690.

[48] M. Turilli, V. Balasubramanian, A. Merzky, I. Paraskevakos, S. Jha, Mid-
dleware Building Blocks for Workflow Systems, Computing in Science
& Engineering 21 (4) (2019) 62–75.

[49] F. Mölder, K. Jablonski, L. Brice, M. Hall, C. Tomkins-Tinch, V. Sochat,
J. Forster, S. Lee, S. Twardziok, A. Wilm, M. Holtgrewe, S. Rahmann,
S. Nahnsen, Sustainable Data Analysis with Snakemake, F1000Research
10:33 [version 2; peer review: 2 approved] (2021). doi:10.12688/

f1000research.29032.2.
[50] I. Colonnelli, B. Cantalupo, I. Merelli, M. Aldinucci, StreamFlow:

Cross-Breeding Cloud with HPC, IEEE Transactions on Emerging Top-
ics in Computing 9 (4) (2021) 1723–1737. doi:10.1109/TETC.2020.
3019202.

[51] J. Wozniak, T. Armstrong, M. Wilde, D. Katz, E. Lusk, I. Foster, Swift/T:
Large-Scale Application Composition via Distributed-Memory Dataflow
Processing, in: Proceedings of the 13th IEEE/ACM International Sympo-
sium on Cluster, Cloud, and Grid Computing, 2013, pp. 95–102.

[52] B. Sly-Delgado, T. S. Phung, C. Thomas, D. Simonetti, A. Hennessee,
B. Tovar, D. Thain, TaskVine: Managing In-Cluster Storage for High-
Throughput Data Intensive Workflows, in: Proceedings of the 18th Work-
shop on Workflows in Support of Large-Scale Science, 2023.

[53] J. Vivian, A. A. Rao, F. A. Nothaft, C. Ketchum, J. Armstrong, A. Novak,
J. Pfeil, J. Narkizian, A. D. Deran, A. Musselman-Brown, et al., Toil
enables reproducible, open source, big biomedical data analyses, Nature
biotechnology 35 (4) (2017) 314–316.

[54] F. R. Duro, J. G. Blas, F. Isaila, J. Carretero, J. M. Wozniak, R. Ross, Ex-
perimental evaluation of a flexible I/O architecture for accelerating work-
flow engines in ultrascale environments, Parallel Computing 61 (2017).
doi:http://dx.doi.org/10.1016/j.parco.2016.10.003.

[55] J. Ozik, N. T. Collier, J. M. Wozniak, C. Macal, G. An, Extreme-scale
dynamic exploration of a distributed agent-based model with the EMEWS
framework, IEEE Transactions on Computational Social Systems 5 (3)
(2018).

[56] J. M. Wozniak, M. Dorier, R. Ross, T. Shu, T. Kurc, L. Tang, N. Pod-
horszki, M. Wolf, MPI jobs within MPI jobs: A practical way of en-
abling task-level fault-tolerance in HPC workflows, Future Generation
Computing Systems 101 (2019). doi:https://doi.org/10.1016/j.
future.2019.05.020.

[57] M. Hategan-Marandiuc, A. Merzky, N. Collier, K. Maheshwari, J. Ozik,
M. Turilli, A. Wilke, J. M. Wozniak, K. Chard, I. Foster, et al., Psi/j:

13

https://doi.org/10.1145/2110497.2110509
https://doi.org/10.1016/j.future.2021.09.043
https://doi.org/10.1145/3177851
https://doi.org/10.1145/3177851
https://doi.org/10.1145/3177851
https://doi.org/10.1145/3177851
https://doi.org/10.1145/3177851
https://doi.org/10.1145/3592979.3593420
https://doi.org/10.1016/j.future.2024.107608
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1038/s41597-020-00638-4
https://doi.org/10.1007/978-1-4842-4961-1_4
https://doi.org/10.1007/978-1-4842-4961-1_4
https://doi.org/10.1109/MCSE.2019.2906593
https://doi.org/10.1002/cpe.3505
https://doi.org/10.1016/j.future.2015.08.015
https://doi.org/10.1016/j.future.2015.08.015
https://doi.org/10.1145/2443416.2443417
https://doi.org/10.1145/2443416.2443417
https://doi.org/10.48550/arXiv.1912.02892
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.12688/f1000research.29032.2
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/http://dx.doi.org/10.1016/j.parco.2016.10.003
https://doi.org/https://doi.org/10.1016/j.future.2019.05.020
https://doi.org/https://doi.org/10.1016/j.future.2019.05.020


A portable interface for submitting, monitoring, and managing jobs,
in: 2023 IEEE 19th International Conference on e-Science (e-Science),
IEEE, 2023, pp. 1–10.

[58] A. Alsaadi, M. Hategan-Marandiuc, K. Maheshwari, A. Merzky,
M. Titov, M. Turilli, A. Wilke, J. M. Wozniak, K. Chard, R. F. da Silva,
S. Jha, D. Laney, Exascale workflow applications and middleware: An
exaworks retrospective (2024). arXiv:2411.10637.
URL https://arxiv.org/abs/2411.10637

[59] P. A. Ewels, A. Peltzer, S. Fillinger, H. Patel, J. Alneberg, A. Wilm,
M. U. Garcia, P. Di Tommaso, S. Nahnsen, The nf-core framework
for community-curated bioinformatics pipelines, Nature biotechnology
38 (3) (2020) 276–278.

[60] S. Grayson, D. Marinov, D. S. Katz, R. Milewicz, Automatic reproduction
of workflows in the snakemake workflow catalog and nf-core registries,
in: Proceedings of the 2023 ACM Conference on Reproducibility and
Replicability, 2023, pp. 74–84.

[61] O. J. R. Gustafsson, S. R. Wilkinson, F. Bacall, S. Soiland-Reyes, S. Leo,
L. Pireddu, S. Owen, N. Juty, J. Fernández, T. Brown, H. Ménager,
B. Grüning, S. Capella-Gutierrez, F. Coppens, C. Goble, Workflowhub: a
registry for computational workflows, Scientific Data 12 (1) (2025) 837.
doi:10.1038/s41597-025-04786-3.
URL https://doi.org/10.1038/s41597-025-04786-3

[62] S. R. Wilkinson, M. Aloqalaa, K. Belhajjame, M. R. Crusoe,
B. de Paula Kinoshita, L. Gadelha, D. Garijo, O. J. R. Gustafsson, N. Juty,
S. Kanwal, F. Z. Khan, J. Köster, K. P. von Gehlen, L. Pouchard, R. K.
Rannow, S. Soiland-Reyes, N. Soranzo, S. Sufi, Z. Sun, B. Vilne, M. A.
Wouters, D. Yuen, C. Goble, Applying the FAIR Principles to compu-
tational workflows, Scientific Data 12 (1) (2025) 328. doi:10.1038/

s41597-025-04451-9.
URL https://doi.org/10.1038/s41597-025-04451-9

[63] [Online] https://aiidateam.github.io/aiida-registry/.
[64] D. Blankenberg, G. Von Kuster, E. Bouvier, D. Baker, E. Afgan, N. Stoler,

G. Team, J. Taylor, A. Nekrutenko, Dissemination of scientific software
with galaxy toolshed, Genome biology 15 (2014) 1–3.

[65] D. Yuen, L. Cabansay, A. Duncan, G. Luu, G. Hogue, C. Overbeck,
N. Perez, W. Shands, D. Steinberg, C. Reid, et al., The dockstore: en-
hancing a community platform for sharing reproducible and accessible
computational protocols, Nucleic Acids Research 49 (W1) (2021) W624–
W632.

14

https://arxiv.org/abs/2411.10637
https://arxiv.org/abs/2411.10637
http://arxiv.org/abs/2411.10637
https://arxiv.org/abs/2411.10637
https://doi.org/10.1038/s41597-025-04786-3
https://doi.org/10.1038/s41597-025-04786-3
https://doi.org/10.1038/s41597-025-04786-3
https://doi.org/10.1038/s41597-025-04786-3
https://doi.org/10.1038/s41597-025-04451-9
https://doi.org/10.1038/s41597-025-04451-9
https://doi.org/10.1038/s41597-025-04451-9
https://doi.org/10.1038/s41597-025-04451-9
https://doi.org/10.1038/s41597-025-04451-9
 https://aiidateam.github.io/aiida-registry/

	1 Introduction
	2 Axes of Scientific Workflow Systems
	2.1 Workflow Characteristics
	2.2 Composition
	2.3 Orchestration
	2.4 Data Management
	2.5 Metadata Capture

	3 Surveying Existing Workflow Systems
	4 Process to Define the Terminology of Workflow Systems
	5 [rgb]0,0,0Related Work
	6 Conclusion

