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Abstract—Nuclear fusion holds the promise of an endless
source of energy. Several research experiments across the world
and joint modeling and simulation efforts between the nuclear
physics and high performance computing communities are ac-
tively preparing the operation of the International Thermonu-
clear Experimental Reactor (ITER). Both experimental reactors
and their simulated counterparts generate data that must be
analyzed quickly and in a resilient way to support decision
making for the configuration of subsequent runs or prevent a
catastrophic failure. However, the cost if the traditional tech-
niques used to improve the resilience of analysis workflows, i.e.,
replicating datasets and computational tasks, becomes prohibitive
with explosion of the volume of data produced by modern
instruments and simulations. Therefore, we advocate in this paper
for an alternate approach based on data reduction and data
streaming. The rationale is that by allowing for a reasonable,
controlled, and guaranteed loss of accuracy it becomes possible
to transfer smaller amounts of data, shorten the execution time
of analysis workflows, and lower the cost of replication to
increase resilience. We develop our research and development
roadmap towards resilient near real-time analysis workflows in
fusion energy science and present early results showing that data
streaming and data reduction is a promising way to speed up
the execution and improve the resilience of analysis workflows.

I. INTRODUCTION

Nuclear fusion holds the promise of an endless source of
energy. Being able to replicate on Earth the processes that
power the Sun and stars could address the ever-increasing
energy needs of our modern world [1]. One of the leading
design to implement a practical fusion reactor is the Tokamak
design which consists in confining a plasma in the shape of
an axially-symmetrical torus thanks to a powerful magnetic
field. Several research tokamak experiments across the world
(e.g, Korea Superconducting Tokamak Advanced Research (K-
STAR) in South Korea, the Mega Ampere Spherical Tokamak
(MAST) in the United Kingdom, or DIII-D in the United
States) are actively preparing the operation of the International
Thermonuclear Experimental Reactor (ITER). Moreover, joint
efforts between the nuclear physics and high performance
computing (HPC) communities on the modeling and simu-
lation of tokamaks have led to the development of multiple
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codes, such as the Exascale Computing Project’s (ECP) Whole
Device Modeling application (WDMapp) that allow scientists
to better understand the evolution of the plasma and the
confinement chamber during a ’shot’ [2].

Both experimental reactors and their simulated counterparts
are equipped with multiple probes and diagnostics to mon-
itor the state of the plasma and of the tokamak itself. The
generated data is then processed by complex in situ analysis
and visualization workflows [3]. We identified two scenarios
in which the time to obtain the results of such analyses is
critical to allow for timely decision making. First, operation
parameters or simulation inputs can be reconfigured from one
shot to another, based on the analysis of the data collected
during the former shot, to optimize the behavior of the plasma
or address detected issues. Second, analysis monitoring data
during a shot can allow for the early detection of precursors
of a catastrophic event, and give enough information and time
to operators to take the decision of stopping the reactor. The
processing of these analysis workflows not only has to be done
in near real-time, but also must be resilient. Being unable to
get results in time, because of unexpected delays or resource
failures, may either delay the start of the next shot in the first
scenario or lead to a catastrophic failure in the second one.

These two scenarios are an illustration of a broader need
for the support of time-sensitive workflows in fusion energy
science (FES) and other scientific domains. A recent meta-
analysis [4] of 74 high-priority case studies from the US
Department of Energy (DOE) Office of Science Programs
identified that 45% of the workflows related to these case
studies exhibit a time-sensitive pattern. In FES alone, half
of case studies express this need as “FES experimentation is
by nature time dependent, since a single ‘shot’ of a reactor
produces a burst of data that must be quickly analyzed, with
the output of the analysis supporting decision making for
the configuration of the next shot”. Near real-time analysis
workflows will thus be one of the major category of workflows
to be supported by the forthcoming DOE Integrated Research
Infrastructure [5].

To make a near real-time workflow, or any scientific ap-
plication, more resilient to delays and failures, one of the
most common technique in the literature is to replicate and
distribute both datasets and (parts of) the analysis workflow on
different compute clusters (i.e., to survive to failures) [6]–[9].
However, the number of replicas that can be deployed to im-
prove resilience is limited by resource availability, budgetary
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constraints, or energy-efficiency concerns, and this approach
simply becomes prohibitively expensive with explosion of
the volume of data produced by modern instruments and
simulations. Therefore, we advocate for an alternate approach
based on data reduction and data streaming. The rationale is
that by allowing a for a reasonable, controlled, and guaranteed
loss of accuracy in the data produced by an fusion reactor
or an HPC simulation, it becomes possible to: i) transfer
smaller amounts of data from the data source to the analysis
resources; ii) shorten the execution time of analysis workflows
by processing smaller datasets; and iii) lower the cost of
replicating data and computations to increase resilience.

In this paper, after having briefly described the structure of
near real-time analysis workflows in fusion energy science in
Section II, we develop our research and development roadmap
to make these workflow resilient in Section III. The different
steps of this roadmap are to:

• Rely on a high-performance I/O and data management
framework to reduce and stream the data produced by
(simulations of) fusion reactors (Section III-A);

• Generate multiple reduced data streams to both increase
the resilience of the analysis workflows and meet their
near real-time constraints (Section III-B);

• Solve a multi-criteria optimization problem and design re-
source allocation and scheduling algorithms to guarantee
the respect of the time constraint imposed on the execu-
tion of the analysis while offering a certain amount of
resilience at a controlled additional cost (Section III-C);

• Design appropriate performance evaluation tools to assess
the quality and robustness of the designed algorithm over
a broad range of experimental scenarios (Section III-D).

Finally we review related work in Section IV before sum-
marizing our approach in Section V.

II. NEAR REAL-TIME ANALYSIS IN FUSION SCIENCE

Fig. 1 illustrates the different phases of a generic near
real-time analysis workflow in FES. First, the instrument,
or its simulated counterpart, produces data that need to be
acquired before being processed. In the specific case of nuclear
fusion reactors, this corresponds to dozens of diagnostics
(e.g., cameras, spectrometers, bolometers, monitoring sensors,
and probes) and uses various data formats. Commonplace
approaches for data acquisition are to write the generated data
into files or to create a data stream. The second step is to
transport the acquired data to computing resources dedicated
to analysis. These resources constitute the destination endpoint
of a data stream, while, in the case of a file-based transport,
it implies moving the files over the network and read them
at destination. The analysis step can be a simple program
(e.g., computing derived quantities of interest or an histogram)
or a more complex workflow (e.g., combining a Poincaré
puncture plot to heat load and diffusion calculations [3]). This
analysis usually comprises a detection mechanism (e.g., going
over a given threshold) that, if triggered, sends a feedback to
operators. Getting this feedback in a timely fashion allows the
operators to take informed decision about the next action to

Fig. 1. Phases of a generic near real-time workflow in Fusion Energy Science.

perform (e.g., reconfigure the instrument for the next shot or
shutdown the reactor to prevent a catastrophic event).

The Experiment-to-Experiment cycle illustrated by Fig. 1
is generally executed periodically over the lifespan of the
operation of a fusion reactor. The main difference between
the two considered near real-time scenarios lies in ∆t, the
length of the period between two iterations of this cycle. The
time operators have between two shots of a fusion reactor
to perform a post-mortem analysis of the produced data and
proceed with the reconfiguration of the reactor is of the order
of an hour. However, to be able to detect precursors of a
catastrophic event, this cycle must be repeated on the order
of every few seconds.

Different techniques can be used to ensure that operators
and scientists can obtain the needed analysis results in near
real-time. Data produced by sensors and probes usually go
through several filtering steps to reduce the volume of in-
formation to analyze at each step and focus on the most
relevant information. These filters can be implemented directly
in hardware using custom-made electronics or use algorithms
whose complexity and execution time increase from one
filtering step to another. However, we believe that filtering out
data and simplifying the analysis algorithms may lead to losing
more information than opting for a reduction-based approach
that trades some accuracy to respect near real-time constraints.

III. TOWARDS RESILIENT NEAR-REAL TIME WORKFLOWS

In this section we detail the research and development we
deem necessary to make near real-time analysis workflows in
fusion energy science resilient. Our roadmap includes three
main steps in which we plan to: (i) extend the structure of
the analysis workflow to leverage data reduction techniques
and create redundant analyses; (ii) design resource allocation
and scheduling algorithms to offer more resilience at an
affordable cost; and (iii) evaluate the quality of the designed
algorithms for the two considered use case scenarios under
various experimental conditions.

A. Enabling Data Streaming and Data Reduction

A essential preliminary step towards resilient near real-time
analysis workflows is to be able to stream and reduce the data
produced by the fusion experiment. Following recommenda-
tions made in [10], which identified near real-time analysis
workflows as a next-generation workflow motif, we propose
to decouple data management, reduction, transport, and storage
from the workflow components that produce or consume data.



To this end, we base our work on two software frameworks
developed at Oak Ridge National Laboratory (ORNL). To
enable data streaming from a fusion experiment to com-
puting resources dedicated to data analysis, we rely on
the ADIOS community-driven high-performance I/O frame-
work [11]. ADIOS exposes a publish/subscribe API to allow
a data generator to explicitly describe the produced data and
when it is ready for output, and for an analysis workflow to
express what data it needs to read and when. A key feature of
ADIOS are its multiple engines that can either write directly to
the storage system or stream data from the application to the
memory of staging nodes or remote resources where it can be
consumed by in situ analysis and visualization components.
Thanks to this flexibility, an analysis workflow can directly
“tap into” data without disrupting the data generator.

ADIOS also exposes the concept of Operator to de-
fine operations to be applied on ADIOS-managed data. In
particular, ADIOS implements lossy (e.g., MGARD [12],
SZ [13], or ZFP [14]) and lossless (e.g., bzip2) data compres-
sion/decompression operators, and data refactoring operators
(e.g., MGARD-DR or SIRIUS [15]).

ADIOS and MGARD have been integrated into the ECP’s
WDMapp codes to achieve write performance over 5 TB/s on
Frontier and drastically reduce the volume of produced data.
Thanks to ADIOS streaming capacities, the time to transfer
data produced by the KSTAR experiment in South Korea to
NERSC in California has been reduced from 12 hours to 10
minutes [16]. More recently, data from the MAST experiment
have been made available in the ADIOS file format.

B. Generating Reduced Data Streams

The second step on our roadmap corresponds to the core of
our approach to make analysis workflows in FES resilient and
ensure that they are executed in near real-time. It consists in
producing additional data streams once data has be acquired
from the instrument or HPC simulation and applying data
reduction techniques to these additional data streams. Fig. 2
illustrates the addition of such a reduced data stream to the
generic analysis workflow introduced in Fig. 1.

Fig. 2. Near real-time workflow in Fusion Energy Science with an additional
reduced data stream to enable redundant analysis and detection.

The second stream depicted at the bottom of Fig. 2 com-
prises two additional steps. First, data has to be reduced, using
techniques ranging from a simple decimation (i.e., only retain-
ing one data point for every N data points) to advanced lossy
compressors [12]–[14], through frequency space techniques
such as wavelet transform or fast Fourier transform for images.

Second, once data has been transported to its destination, it
may, depending on the chosen reduction technique, have to be
decompressed or reconstructed before being analysed.

While these extra steps to compress/refactor and decom-
press/reconstruct data may add some compute time to the
analysis process, they also bring several benefits that justify
the additional cost. First, reducing data mechanically reduces
the time needed to transfer them from the instrument to where
the analysis is performed. To illustrate the potential gain on
transfer time brought by data reduction, we transferred actual
data produced by the MAST experiment from two different
location (i.e., the original MAST data repository in Cambridge,
United Kingdom, and a copy stored on the file system of the
Frontier supercomputer at ORNL) to a laptop also located
at ORNL. Fig. 3 shows the measured data transfer times for
these two scenarios when scaling the resolution of the original
data up and down. Note that the considered MAST dataset is
composed of seven 3D signals. Then, scaling down (resp up.)
the resolution by a factor of two reduces (resp. increases) the
data size by a factor of eight. The dataset to transfer represents
8.6 MB at its original resolution.
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Fig. 3. Evolution of the time to transfer data acquired by MAST, from either
the experiment site in the United Kingdom or a supercomputer in the United
States to a laptop in the United States, when the data resolution changes.

We can see that reducing the size of MAST data by halving
its original resolution also reduces the transfer time by a factor
of two. As the dataset is rather small, the achievable gain is
thus fairly limited but still significant with a near real-time
objective in mind. However, the scaled up versions of the
original dataset (i.e., with doubled and quadrupled resolution)
are more representative of the volume and nature of data the
MAST experiment will produce after its upgrade. We observe
that with increased data sizes, the transfer time becomes
prohibitive for near real-time analyses. Moreover, the transfer
of the dataset whose resolution has been scaled up four times
exhibits high variability which would lead to uncertainty for
the operators in their capacity to get results in time.

We hypothesize that while the data produced by MAST,
once fully upgraded, will have a size of the order of the ’4x’
scenario in Fig. 3 (i.e, about half a gigabyte per shot), the
data produced by ITER will be about a hundred thousand times
larger. At that scale, performing near real-time analyses on the



raw dataset at full accuracy becomes hardly possible. These
preliminary measurements show that data reduction can allow
redundant analyses to start much earlier and thus make the
distribution of reduced replicas of the original dataset over
geographically distributed computing sites a viable option to
increase the resilience of the analysis workflows.

A second advantage of the generation of reduced data
streams is that the time to perform the analyses themselves
can also be reduced. This requires that once decompressed or
reconstructed, the data size remains smaller than the original
size. Reduction techniques such as lossy compression do not
satisfy this requirement as decompressed data usually have a
size commensurate to that of the original dataset. Conversely,
simple techniques such as decimation would reduce the size
of the data to be analyzed, but without any guarantee on
the accuracy of the reduced data. We thus propose to rely
on more advanced refactoring techniques [17] in which data
is decomposed and refactored into a hierarchical reduced
representation. The upper levels of this hierarchy would be
made of lower accuracy, but much smaller in size, versions
of the original data, with both accuracy and size increase
as we progress towards the lower levels of the hierarchy.
The key feature here is to guarantee a certain error, or loss
of accuracy, for each of the refactoring levels. This way, it
becomes possible to select how accuracy is traded for the
reduction of the data size, hence for the acceleration of both
transfer time and analysis time.

Finally, generating multiple reduced data streams and ana-
lyzing them also mechanically improves resilience by repli-
cating the entire analysis process. Note that these replicas
working on less accurate data, the confidence the operator has
in the analysis results may be lower. However, using the right
reduction techniques, the introduced errors can be bounded.
Moreover, to regain some of the lost confidence, the results ob-
tained with the different replicas can be aggregated, provided
they converge on the detection of the same phenomenon.

C. Multi-Objective Optimization and Algorithm Design

Our objective to enable resilient near real-time analysis
workflows for fusion energy science can translate to the
following multi-objective optimization problem. Given an
analysis workflow W processing a dataset D, we want to
determine a resilient execution scheme that satisfies:

• A time constraint ∆T before which the results of the
analysis have to be sent back to operators;

• A minimum resilience factor R, meaning that the analysis
can be completed despite the occurrence of R failures (or
delays preventing the respect of the time constraint);

• A maximum resource budget B allocated to resilience.
To this end, we generate R reduced data streams Dj

ei with
1 ≤ j ≤ R and ei, an error after reduction (i ∈ R+). We
denote by D0

e0 , the original dataset and by T (W,D0
e0 , C0) the

time the complete the analysis workflow while operating on
the original dataset. This execution time includes the time to
transfer D0

e0 from the data production site P0 to C0, a primary
set of computing resources dedicated to analysis.

Each of the reduced data streams can be analysed on
a set of computing resources Ck leading to an execution
time of T (W,Dj

ei , Ck). Here, this execution time not only
includes the time to transfer data from P0 to Ck but also the
time to compress/refactor and decompress/reconstruct data at
destination. Finally, costk represents the cost (in node.hours
or in a given currency) to use resources Ck.

Our objective is then to design an algorithm that decides
of: (i) the number of reduced data streams to generate; (ii) the
accepted error for each of these streams; and (iii) the set of
computing resources to use for the analysis of each stream, in
order to maximize R, such that:

∃i ∈ R+, 0 ≤ j ≤ R, k ≥ 0 s.t. max
(
T (W,Dj

ei , Ck)
)
≤ ∆t,

i.e., the primary analysis workflow or at least of one its replicas
completes in less than the time constraint, and:∑

k>0

costk ≤ B,

i.e., the sum of the costs associated to the execution of the
workflow replicas to ensure its resilience remains under the
maximum budget allowed.

A key parameter in the design of such a resource allocation
and scheduling algorithm is ei, the error associated to a
reduced data stream. We will consider different scenarios in
this part of our roadmap. We will start with a case where
no bound on the error can be guaranteed, for instance when
using simple techniques such as decimation, to focus on the
capacity to drastically reduce data size in order to meet the
time, resilience, and budget constraints. Then, we will consider
a scenario in which there exists a certain error threshold
that guarantees that the analysis results can be exploited for
decision making. Finally, we will consider a more realistic
scenario in which the confidence in the analysis results is
inversely proportional to the tolerated error (i.e., the smallest
the error, the highest the confidence). This scenario will
add another optimization objective to our algorithm, that of
maximizing the confidence in the results of the workflow
replicas operating on reduced data.

D. Simulation-based Performance Evaluation

Another important part of the design of a resource allo-
cation and scheduling algorithm is to be able to determine
how this algorithm would perform in various scenarios (e.g.,
optimization goals, application configuration, target compute
and storage infrastructure, or failure injection pattern). Such an
evaluation requires to compute application execution metrics
which is often done using analytical models. However, when
it becomes important to account for the sharing of network
resources, contention in accesses to a shared parallel file
system, or overlap between computation, I/O, and network
communication activities, as it is the case with near real-time
analysis workflows, the analytical modeling problem becomes
highly combinatorial. Models must thus make simplifying
assumptions that do not hold in practice. A commonplace



alternative is to resort to discrete-event simulation that can
reproduce the behavior of a particular workflow executed on
a given compute and storage infrastructure. The performance
metrics needed to evaluate the quality of an algorithm are then
computed from the event trace produced by the simulation.

In our roadmap we propose to build on the well estab-
lished SimGrid framework [18]. SimGrid provides accurate
and scalable simulation models and low-level abstractions
for simulating distributed applications, runtime systems (e.g.
implementations of the MPI standard), and distributed comput-
ing infrastructures ranging from commodity clusters to grid,
clouds, and leadership class HPC systems. Typical simulators
written with SimGrid comprises multiple actors (i.e., simu-
lated sequential processes, defined by a main procedure written
by the user), each of which creating one or more activities (i.e.,
computations, network communications, or I/O operations).
Each activity is defined by a total amount of work to do
(e.g., bytes to read, compute operations to perform) and the
set of resources (i.e., CPUS, network links, or disks) that are
used to perform this work. The simulation models at the core
of SimGrid then determine the respective completion date of
each of these activities to make the simulated time advance.
SimGrid decouples the simulator that implements the logic of
the application to study (e.g., a data generator and an analysis
workflow) from the description of the simulated resources on
which the application run and exposes mechanisms to inject
delays and failures into simulations.

Data streaming and data reduction being at the core of the
proposed approach to make near real-time workflow resilient,
we specifically developed a versatile simulated data transport
layer that covers the main driving principles of the ADIOS
framework. Integrated to any SimGrid-based simulator, this
standalone library allows simulated actors to publish or sub-
scribe to self-described data objects. The library then handles
the transport of data from publishers to subscribers using either
files or streams. Data reduction can be implemented as part
of the logic of the actors composing the simulated version of
the considered near real-time analysis workflows. Thanks to
this library and the aforementioned features of SimGrid, we
thus have the necessary tools to assess the performance of the
designed resource allocation and scheduling algorithms.

IV. RELATED WORK

To improve the resilience of scientific workflows, common-
place approaches add more redundancy to data and com-
putations to ensure the availability of the former and the
completion of the latter. These include replication [6], [7] (i.e.,
produce multiple copies of the data, processes, and/or work-
flows to avoid single points of failure) and erasure coding [19]
(i.e., generate parities that can be used to reconstruct lost data
chunks in case of failures). However, as the volume of sci-
entific data produced becomes astounding and the complexity
of the data processing workflow increases, these conventional
approaches to improve resilience become infeasible in many
cases. The redundancy involved by these approaches grows
linearly with the original data size which can cause significant

storage and data movement overhead. The development of
data reduction [12]–[14] and refactoring [15], [17] techniques
offers new opportunities for addressing this challenge, that we
intend to leverage to make near real-time workflows in fusion
energy science more resilient.

The resilience of scientific workflow has also been con-
sidered from the scheduling and fault tolerance perspectives
with the design of algorithms that allow workflows to continue
their execution despite the failure of some computing or
network resources. These scheduling algorithms rely on the
replication of (some of) the components of a workflow and the
distribution of theses replicas across distinct set of computing
resources [8], [9], or exploit the production of checkpoints by
the workflow components to ensure the resilient execution of
the workflow thanks to rollback-and-recover mechanisms [20].
The effect that adding such fault tolerance mechanisms to the
workflow scheduling process has on the quality of service
experienced by the application has also been quantified [21].
However, none of these works considers the use of data
reduction techniques. Then, all replicates and checkpoints are
created using the full dataset at full accuracy, which we believe
is not cost-effective and not a sustainable approach in light
of the ever-increasing volume of data generated by modern
scientific experiments and large-scale HPC simulations.

V. CONCLUSION

The operation of commercial nuclear fusion reactors will
heavily rely on the analysis of the monitoring data produced
by all the sensors and probes attached to these reactors. These
analyses are very time sensitive to maximize the operation
time of nuclear reactors and prevent catastrophic events. They
also must be resilient as the lack of analysis results because
of unexpected delays or failures may prevent operators to take
the necessary informed decision in time.

In this paper we have developed our research and de-
velopment roadmap towards resilient near real-time analysis
workflows in fusion energy science. The proposed approach
leverages data streaming, data reduction, and data refactoring
techniques to trade some accuracy for both a faster execution
of the analysis workflows and a reduction of the additional
cost related to the replication of workflow components for
resilience purposes. The combined use of these techniques
leads to a complex multi-objective optimization problem for
which we propose to design advanced resource allocation and
scheduling algorithms. We have also presented how we do
plan to evaluate the quality of the designed algorithms under
various experimental conditions thanks to the development of
comprehensive and realistic discrete-event simulators.

Our future work will be to research and implement the
different steps of this roadmap and to validate the proposed
approach by analyzing actual data coming from different
prototypes of nuclear fusion reactors. To this end we will lever-
age and extend the capacities of existing software packages
that already provide the necessary foundations to realize the
presented roadmap.
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