
An Exact Algorithm for the Linear Tape Scheduling Problem

Valentin Honoré,1 Bertrand Simon,1 Frédéric Suter1,2

1 IN2P3 Computing Center / CNRS, Lyon - Villeurbanne, France
2 Oak Ridge National Laboratory, Oak Ridge, TN 37830

valentin.honore@cc.in2p3.fr, bertrand.simon@cc.in2p3.fr, frederic.suter@cc.in2p3.fr

Abstract

Magnetic tapes are often considered as an outdated storage
technology, yet they are still used to store huge amounts of
data. Their main interests are a large capacity and a low price
per gigabyte, which come at the cost of a much larger file ac-
cess time than on disks. With tapes, finding the right ordering
of multiple file accesses is thus key to performance. Moving
the reading head back and forth along a kilometer long tape
has a non-negligible cost and unnecessary movements thus
have to be avoided. However, the optimization of tape request
ordering has rarely been studied in the scheduling literature,
much less than I/O scheduling on disks. For instance, mini-
mizing the average service time for several read requests on a
linear tape remains an open question.
Therefore, in this paper, we aim at improving the quality of
service experienced by users of tape storage systems, and not
only the peak performance of such systems. To this end, we
propose a reasonable polynomial-time exact algorithm while
this problem and simpler variants have been conjectured NP-
hard. We also refine the proposed model by considering U-
turn penalty costs accounting for inherent mechanical accel-
erations. Then, we propose a low-cost variant of our optimal
algorithm by restricting the solution space, yet still yielding
an accurate suboptimal solution. Finally, we compare our al-
gorithms to existing solutions from the literature on logs of
the mass storage management system of a major datacenter.
This allows us to assess the quality of previous solutions and
the improvement achieved by our low-cost algorithm. Aiming
for reproducibility, we make available the complete imple-
mentation of the algorithms used in our evaluation, alongside
the dataset of tape requests that is, to the best of our knowl-
edge, the first of its kind to be publicly released.

1 Introduction
Initially designed for media recording, the usage domain of
magnetic tapes has broadened over the decades and remains
a real competitor to disk storage even for scientific data. The
main advantages of this storage medium are a large storage
capacity for a reasonable price, a better data preservation,
better security, and better energy efficiency. Indeed, it has
been estimated that total costs are reduced by an average fac-
tor of 6 when archiving data on tape rather than disks (Reine
and Kahn 2015).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recent tape cartridges can store up to 20 terabytes of data
on a one-kilometer-long physical storage medium, longitu-
dinally divided into few bands which are each also longitudi-
nally divided into dozens of wraps. Wraps are in turn divided
into dozens of tracks. All tracks in a given wrap are read or
written simultaneously. A tape is then composed of hundreds
of parallel wraps which are logically linked together in a lin-
ear serpentine. Intuitively, the storage space can be seen as
a single linear wrap coiled liked a serpent on the tape.

Thousands of such cartridges are usually stored on the
shelves of robotic libraries, as books would be stored in an
actual library. Then, when data on a given cartridge is not
needed, its storage does not induce any power consumption,
and it cannot be accessed by intruders. All these advantages
of tape storage made it an unavoidable candidate for the stor-
age of the exabytes of data produced at CERN by the Large
Hadron Collider experiments (Davis et al. 2019) or data re-
lated to European weather forecast (Mäsker et al. 2016).

The huge amount of data stored in such tape libraries,
typically hundreds of petabytes, is usually managed by a
Mass Storage Management System (e.g., IBM HPSS or HPE
DMF) which keeps track of the exact location of the files
stored on tapes and answers to users’ requests. When a par-
ticular file is needed, the tape it is on will be fetched by a
robotic arm, brought to a tape drive, and loaded. Then, the
reading head of the tape drive is positioned to the beginning
of the file to read, or to the first available space to write new
data, and the I/O operation eventually occurs.

The main drawback of tape storage is the high latency to
access a given file. Mounting a tape into a tape reader re-
quires a delay of about a minute (Cano et al. 2021). More-
over, seeking from one file to another adds more delay to
place the reading head on the correct wrap and adapt the
longitudinal position of the tape in front of the head. When
accesses to multiple files are requested, finding the right or-
dering of these accesses is thus key to performance. Mov-
ing the reading head back and forth along a kilometer long
tape has a non-negligible cost and unnecessary movements
thus have to be avoided. However, the optimization of tape
request ordering has rarely been studied in the scheduling
literature, much less than I/O scheduling on disks. For in-
stance, minimizing the average service time for several read
requests, i.e., the average time at which each request is read,
on a linear tape remains an open question.



Therefore, in this paper, we aim at improving the qual-
ity of service experienced by users of tape storage systems,
and not only the peak performance of such systems. To this
end, we consider a simplified model of magnetic tape com-
posed of a single linear track. This is a strong assumption
as the serpentine nature of tapes leads to important opti-
mization decisions. However, it still reflects local batch re-
quests which would target files belonging to the same wrap.
We also believe it is a fundamental model which should be
deeply understood. In this model, a tape can therefore be
seen as a linear sequence of files which all have to be read
from the left to the right. The input of the problem we con-
sider is a list of files that are requested, associated with a
number of requests for each file. The objective is to design a
schedule (i.e., a trajectory of the reading head on the linear
tape) to read all the requested files when the reading head
is initially positioned on the right of the tape. We consider
the average service time as a metric, to ensure a fair service
among all requests. In order to model the temporality of a
given schedule, we assume that the speed of the tape move-
ment is constant, although it is a mechanical device with in-
ertia. We moderate this inaccuracy by taking into account
the deceleration induced by a U-turn of the tape as a nominal
penalty. Note that we do not consider write requests, which
are usually done separately, nor update requests, which are
avoided as they damage nearby data. Following (Cardonha
and Real 2016), we refer to this problem as the Linear Tape
Scheduling Problem (LTSP), noting that our model differs
from theirs by accounting for U-turn penalties.

LTSP has been previously studied by Cardonha and Real
(2016, 2018) and conjectured to be impossible to be solved
efficiently. Indeed, even simpler variations restricting either
file requests to be unique or file sizes to be equal have been
conjectured NP-hard (Cardonha and Real 2018). We answer
this open question in this paper by providing a polynomial
algorithm optimally solving the unrestricted LTSP problem,
also considering U-turn penalties. More precisely, we show
that a carefully designed Dynamic Programming implemen-
tation (technique which has been considered in (Cardonha
and Real 2018) but was deemed not conclusive) allows us
to compute an optimal schedule in a reasonable polynomial
time. We then provide a faster suboptimal algorithm and
compare the performance of these two original algorithms
to that of existing algorithms on a dataset built from the re-
cent history of the IN2P3 Computing Center tape library1.

The remainder of this paper is organized as follows. In
Section 2, we review the literature on tape scheduling and
related optimization problems. In Section 3, we define and
discuss precisely the model and the objective function. In
Section 4 we expose our algorithmic solutions to this prob-
lem. Finally, in Section 5, we present the results of our sim-
ulations on a real-world dataset.

2 Related work
The closest works to the present paper (Cardonha and Real
2016, 2018) study LTSP under the same tape model, but

1We discuss the connections with a concurrent work (Cardonha,
Ciré, and Real 2021) in the Appendix

without U-turn penalties. The authors note that the algo-
rithm minimizing the maximal service time, i.e., the time
at which all files are read, can present an average service
time arbitrarily far from the optimal. They show that the op-
posite algorithm reading the rightmost files first is however
a 3-approximation, and design a few greedy optimizations.
Finally, they provide several heuristics for the online variant
and compare their solutions through simulations.

LTSP is related to several well-studied problems in the-
oretical computer science. The most famous is probably the
Traveling Salesperson Problem, where the goal is to visit n
points as fast as possible following given travel times be-
tween each pair of points. This problem is notoriously NP-
hard in general metrics (Lawler et al. 1985) so approxima-
tion algorithms and special cases have been studied exten-
sively. One of the most recent development has been the de-
sign of an algorithm surpassing the long-standing approxi-
mation ratio of 1.5 (Karlin, Klein, and Gharan 2021). LTSP
is closer to its restriction on the real line, for which it can
be solved in O(n2) (Bjelde et al. 2020). A key difference
between LTSP and the Traveling Salesperson Problem re-
sides in the objective function, as LTSP aims at minimizing
the average service time. This objective is captured by the
Minimum Latency Problem (also called Traveling Repair-
person Problem) for which the best known approximation
ratio is 3.59 (Chaudhuri et al. 2003). This problem is already
strongly NP-hard on trees (Sitters 2002), although it admits
a PTAS (Sitters 2021), but can be solved polynomially on
the line if there are no deadlines (Afrati et al. 1986). Keep-
ing the average service time objective function but adding
delays at every visited vertex leads to a more general defini-
tion of the Traveling Repairperson Problem. This problem is
strongly NP-hard on the line when deadlines or release times
are involved (Bock 2015) but its complexity when requests
can be served at any time is still unknown.

A different kind of related problems has been studied un-
der the name of Dial-A-Ride. Here, requests are composed
of a source and a destination and the goal is to move ve-
hicles to transport all requests from their source to their
destination. Several variants of the problem exist, even re-
stricted to the offline setting, depending on the presence of
release times or the number and capacities of the vehicles,
see (de Paepe et al. 2004). The Dial-A-Ride problem can be
seen as a generalization of LTSP but is often studied with
the objective of minimizing the total service time. A sim-
pler variant, close to our problem, considers a single vehicle
able to transport one request at a time without being able to
drop it before the destination, and is shown to be polynomi-
ally solvable (Atallah and Kosaraju 1988) when minimizing
the total service time. A formulation aiming at minimizing
the average service time has been shown to be NP-hard, re-
lying on request irregularities (overlapping trips in different
directions) (de Paepe et al. 2004, Theorem 7) which cannot
happen in LTSP where requests are unidirectional and files
are disjoint.

We did not cover all the work done on the online version
of these problems, when future requests are unknown, but
we refer the reader to (Bjelde et al. 2020) for an overview of
such results.



The literature on tape scheduling is rather scarce al-
though the role of tape libraries is far from negligible in
modern computing centers. Contrarily to this paper, most
studies consider a more complex tape geometry, usually a
serpentine. Hillyer and Silberschatz (1996) focus on low-
level hardware information (key points) to evaluate several
heuristics. Sandsta and Midtstraum (1999) propose a low-
cost function to approximate the seeking time between two
points of the tape. More and Choudhary (2000) design al-
gorithms to schedule the mounts of different tapes in a li-
brary. Melia (2018) evaluates the seek times between any
two points of a recent tape, data which is used as input in
a few heuristics to compare their performance. Software de-
signed to optimize tape usage appear to often sort read re-
quests based on their tape position (Schaeffer and Casanova
2011; Zhang et al. 2006). A common point to these studies
is that the focus has mostly been on cost modeling due to the
two-dimensional nature of the tape and low-level hardware
aspects, but publicly released scheduling algorithms are of-
ten greedy ones. A proprietary solution used by some tape
libraries, named Recommended Access Order (RAO), ex-
ploits such two-dimensional tape information but its under-
lying algorithm is not available (IBM 2019, Section 4.27).

3 Model and Problem Descriptions
We consider a linear tape of length m, divided successively
in nf disjoint files (f1, . . . , fnf

) of integer size s(fi). Let
`(fi) be the length between the left of the tape and the left
of the file fi and r(fi) = `(fi) + s(fi). We say that fi < fj
if file fi is located on the left of fj , i.e., `(fi) < `(fj). We
are given a set of n requests on nreq files among the nf files
of the tape, with possible duplicates, where each request is a
file. Let x(fi) be the number of requests allocated to file fi.

At the beginning, the reading head is positioned on the
right of the tape. A request is fulfilled when its file has been
traversed from the left to the right by the reading head. We
assume the reading head moves at constant speed (the tape
is actually moving and the head is fixed, but switching roles
helps the exposure), a time unit being necessary to traverse
a file chunk of size 1 in either direction. We also consider a
time penalty U for each U-turn performed by the head.

The main limitation of this model concerns the track ge-
ometry. Modern tapes are not constituted of a single linear
track, and being aware of their serpentine geometry is es-
sential to optimize the reading sequence and seeking costs.
However, this simpler model is able to emulate accurately
local considerations when files written in the same period
are located in a single track. It is also fundamental to deeply
understand the complexity of such a model knowing that the
serpentine model is much closely related to NP-hard prob-
lems such as the Traveling Salesperson Problem.

The assumption of the tape moving at a constant speed in
front of the reading head is obviously inaccurate due to ac-
celeration and deceleration inherent to mechanical devices.
However, the cruise speed is typically reached fast enough
so this approximation is satisfactory apart from U-turns. The
nominal U-turn penalty used to take into account these slow-
downs therefore improves the model accuracy.

Other limitations of the model such as the undifferentiated
reading speed or the forced starting position of the head are
discussed as extensions in the supplementary material.

The objective is to provide a schedule, i.e., a trajectory
of the reading head on the tape, that serves all requests and
minimizes the sum of service times of requests, i.e., the sum
of the times needed before each request is satisfied. Note
that we formally define the objective as minimizing the sum,
but it is more intuitive in terms of a quality of service to
speak about the average service time, an objective which is
completely equivalent.

A simple lower bound VirtualLB on the optimal solution
is achieved by using n virtual heads serving each request
optimally, i.e., each reading head moves directly to the left
of its assigned file then reads it.

VirtualLB =
∑
f

x(f) · (m− `(f) + s(f) + U).

Minimizing the average service time is one of the most
classical scheduling objective functions with minimizing the
maximal service time. The latter has been the main focus
of studies on the serpentine model as it minimizes the time
spent using the tape which decreases wear and delay of other
tapes reads. However, in the linear tape model, minimizing
the maximal service time is trivial while minimizing the av-
erage service time leads to more fairness among users. This
is especially true in a case of low tape usage in which tapes
are rarely waiting to be mounted.

Note that the input consists of a list of n requests rather
than the set of nreq requested files associated with their mul-
tiplicity. The motivation comes from practice, where a set
of read requests has to be satisfied. Hence, polynomial time
algorithms are allowed to be polynomial in n and not only
log n. It is natural to study first this variant of the problem, as
so-called high-multiplicity problems are notoriously much
harder to solve (Gabay 2014).

4 Algorithm
This section presents the main contribution of this paper,
the DP algorithm solving LTSP in time O(n3req · n). Be-
fore describing DP, we start with giving useful definitions,
preliminary remarks, and brief descriptions of existing solu-
tions. The complete correctness proof of DP is deferred to
the supplementary material due to the lack of space. We then
also present the LOGDP variant algorithm, which limits the
search space of DP to provide a suboptimal solution with a
smaller time complexity of O(nreq · n · log2 nreq).

4.1 Preliminaries
In this section, we study the structure of optimal solutions to
provide a simple description of such schedules.

In any optimal solution, the reading head will move to
the leftmost request, then to the rightmost still unread re-
quest. Before reaching the leftmost request, the head may
move back and forth in possibly intricate patterns to read
relevant files first. We say that the solution includes the de-
tour (a, b), with a and b being two requested files such that



a ≤ b, if the head goes directly to r(b) then back to `(a)
after first attaining `(a). As shown previously (Cardonha
and Real 2016) and later stated formally in our setting (see
Lemma 1), there always exists an optimal solution which
can be described only via a set of detours. Furthermore, a
detour can be totally surrounded by a later one (i.e., (a1, b1)
and (a2, b2) with a1 < a2 < b2 < b1) but otherwise two de-
tours cannot intersect each other (i.e., (a1, b1) and (a2, b2)
with a1 ≤ a2 ≤ b1 ≤ b2).

Requested files

f1 f2 f3 f4 f5 f6

Reading
Head

Tape

time

Figure 1: Example of schedule for reading six files described
by the [(f6, f6), (f4, f4), (f3, f5)] detour list. Note the de-
lays caused by U-turn penalties.

Reading
Head

Tape

time

Figure 2: Example of non-optimal schedule. In the second
detour, the movement in thick dotted lines is useless as these
files have already been read earlier (thick solid line).

Figure 1 illustrates a possible solution while Figure 2
shows detours overlapping in a suboptimal manner.

We denote this property on the set of detours in any op-
timal solution as being strictly laminar, following a defi-
nition of laminar used in the scheduling literature, see for
instance (Chen, Megow, and Schewior 2018). We consider
that all solutions contain the detour (fn1 , fnf

), which reads
all skipped files, even if the last movements may not count
towards the objective as the rightmost requests may have al-
ready been served.

An unread file at the right of the current reading head po-
sition is called skipped. It will be read later when the head
moves back to the right, possibly after the head read the left-
most file. For instance, on Figure 1, when f4 is first reached
by the head, f5 is skipped, but when the head first reaches
f2, no file is skipped.

4.2 Existing algorithms
One of the simplest algorithm would be to make no de-
tour. The head simply moves to the leftmost requested file
and then reads all files left-to-right. Despite minimizing the
makespan, it can be arbitrarily far from the optimal solution
in our model (Cardonha and Real 2016). We refer to this
algorithm as NODETOUR.

The opposite strategy would be to perform a detour on
each requested file. This algorithm, named GS for Greedy
Scheduling, has been proved to be a 3-approximation with-
out U-turn penalties (Cardonha and Real 2016). But of
course harsh penalties can arbitrarily degrade its guarantees.

To improve the basic solution offered by GS, the FGS
algorithm (Cardonha and Real 2018) detects detrimental de-
tours in multiple evaluation passes and Filters them out.

As FGS does not benefit from multi-file detours, the
same authors designed the NFGS algorithm, allowing Non-
atomic detours. In essence, for each pair of files a < b start-
ing from the left, it tests whether it would be beneficial to
add the detour (a, b), after removing the detour starting from
a if it existed. Despite its relatively large time complexity,
NFGS remains greedy in nature, definitely sealing any de-
tour that seems beneficial. A variant exploring only detours
spanning over O(log nreq) requested files, LOGNFGS, has
been proposed to trade search space for running time.

Note that the FGS, NFGS, and LOGNFGS algorithms
can be adapted to take into account the U-turn penalty in
their decisions, although losing their approximation factor
of 3 which was inherited from GS. We provide a description
in the supplementary material for completeness.

The structure of existing solutions, relying on greedy eval-
uation passes, illustrates the difficulty of the problem. The
decision of making a detour or not depends on what happens
before (a detour increases the delay on skipped files) and af-
ter (subsequent detours will increase the delay on files that
have been skipped). Detours can also be intricate, as shown
by Figure 1. It thus seems hardly possible to take correct
decisions on detours when each decision may influence the
others. Consequently, Cardonha and Real (2018) only con-
sidered a very restricted model (identical file sizes and a sin-
gle request per file) in which the exact solution is simple but
did not otherwise get any algorithm with an approximation
ratio below 3.

4.3 Algorithm
Here, we describe the DP dynamic programming algorithm.
It uses carefully selected memoization to store the cost of
specific solutions used to build an optimal schedule.

The dynamic program cells have a number and three pa-
rameters: two requested files a and b and a number nskip < n.
The objective for each cell is to compute the best possible
strategy for the reading head between r(b) and `(a) know-
ing that:
1. there is a detour (a, f) for some file f ≥ b,
2. there is no detour (f1, f2) for any files f1, f2 satisfying
a < f1 < b < f2,

3. when the reading head reaches r(b), exactly nskip files
have been skipped.

The content of the cell describes the impact on the total cost
of the movement made by the reading head between the first
time it reaches r(b) and the first time it reaches r(b) af-
ter having read a. In other words, it equals the sum of the
lengths for all requests on any file f of the “unnecessary”
paths traversed by the head in this time interval and before
serving the file f . Unnecessary means that we do not count
the cost that would also be incurred to VirtualLB on a file
f between a and b, as it is inevitable and this simplifies the
formulas. The U-turn penalty on a is therefore not counted
as VirtualLB would also have one U-turn penalty, but other
U-turn penalties in this interval are counted.



b f

Reading
Head

Tape

time

Figure 3: Cost incurred by a detour over file b to a skipped
file f . The solid line represents the shortest path to serve f .
The red dotted line represents the delay incurred by this de-
tour to the service time of f . Other detours are not illustrated
here. Subsequent figures follow the same logic.

bf

Reading
Head

Tape

time

Figure 4: Cost incurred by the detour over b to a left file f .

We define n`(b) as the number of requests on files located
on the left of b, excluding b, and let left(b) be the closest
requested file located to the left of b.

The value of cell T [a, b, nskip] is then defined as follows:

• If b = a, then there is a detour from `(b) to at least r(b)
so we delay all pending requests by 2s(b), and incur no
additional cost to b, see Figures 3 and 4. Therefore,

T [b, b, nskip] = 2 · s(b) · (nskip + n`(b)).

• Otherwise, let Fa,b be the set of requested files located
between a and b excluding a. There are several possibil-
ities to consider to determine the value of the cell: either
b is skipped (it will be read with the detour starting from
a), or read sooner than by the detour starting from a. In
the latter case, it is read on a detour ending on b as there
is no detour going to the right of b starting righter than a.
This detour can start from any file in Fa,b. Then, we have:

skip(a, b, nskip) := T [a, left(b), nskip + x(b)]

+ 2 · (r(b)− r(left(b))) · (nskip + n`(a))

+ 2 · (`(b)− r(left(b))) · x(b)

detourc(a, b, nskip) := T [a, left(c), nskip] + T [c, b, nskip]

+ 2 · (r(b)− r(left(c))) · (nskip + n`(a))

+ 2 · U · (nskip + n`(c))

T [a, b, nskip] = min
(

skip(a, b, nskip) ;

min
c∈Fa,b

detourc(a, b, nskip)
)

In the first case, we recurse on a smaller window skipping
file b, hence increasing nskip. We also account for the cost
of the detour starting from a over the files between left(b)
and b for the requests that will be fulfilled later. The dif-
ferences with earlier are that (1) we also have to account
for the cost to traverse the unrequested files at the left of
b and (2) requests between a and left(b) are served before

a left(b) b f

Reading
Head

Tape

time

Figure 5: Impact of skip(a, b, nskip) on a skipped file f . The
thin dotted line represents the recursively computed impact
(which may include subsequent detours), and the dashed line
the impact directly accounted for.

a left(b) bf

Reading
Head

Tape

time

Figure 6: Impact of skip(a, b, nskip) on a left file f .

the head comes back to the right, hence there are n`(a)
delayed files and not n`(b). See Figures 5 and 6.
Finally, we account for the additional cost to serve b not
covered by the recursive call: the path over the unre-
quested files directly at the left of b, see Figure 7.

a left(b) b

Reading
Head

Tape

time

Figure 7: Impact of skip(a, b, nskip) on b.

In the second case, we have a detour (c, b) for some c in
Fa,b. Hence, all these files will be read when the head
reaches left(c) so we do not change nskip in the recursive
calls. We still need to account for the cost of the detour
starting from a over the interval (r(left(c)), b). See Fig-
ures 8 and 9. We also charge here the U-turn penalties for
all requests who will be served after the head reaches a,
i.e., for all pending requests for which the U-turn at c is
not the last one before they get served (the second U-turn
penalty charged is for the U-turn occurring at b after the
detour (c, b)).

a left(c) c b f

Reading
Head

Tape

time

Figure 8: Impact of detourc(a, b, nskip) on a skipped file f .

a left(c) c bf

Reading
Head

Tape

time

Figure 9: Impact of detourc(a, b, nskip) on a left file f .

Then, the overall solution can be computed through the
call to T [f1, fnf

, 0]. The structure of the recursive calls min-
imizing this value leads to the detours taken by the underly-
ing optimal solution.



4.4 Proof sketch of the algorithm
First, we need a structural result to guarantee that the restric-
tion to strictly laminar detours preserves the optimal solu-
tion. A similar result has been established in (Cardonha and
Real 2016). We state it here and prove it in the supplemental
material for self-consistency and a more precise result.
Lemma 1. There exists an optimal solution composed only
of strictly laminar detours.

We also refer the reader to the supplementary material for
the full proof of DP. It relies on an induction involving sev-
eral case distinctions ensuring every cost is counted once,
requiring technical care to define what to count at each step.
Theorem 1. DP solves optimally LTSP in timeO(n3req ·n).

Proof sketch. The complexity follows from the dynamic
programming definition: there are O(n2req · n) cells which
are each computed in time O(nreq).

We show for all a, b, nskip by induction on b − a that the
computation of cell T [a, b, nskip] is correct. Specifically, our
induction hypothesis considers any best solution Sa,b,nskip of
the problem given three additional constraints: (1) there is
a detour starting from a and going to b or a righter file; (2)
there is no detour starting between r(a) and `(b) and going
to a file righter than b; and (3) when the reading head first
reaches r(b), exactly nskip files have been skipped. Let t1 be
the time when the reading head first reaches r(b) and t2 be
the first time the reading head reaches r(b) (before perform-
ing a potential U-turn) after having read a in Sa,b,nskip . For
each file f , let t(f) the time when it is served in Sa,b,nskip . For
each file f ≤ b, let VirtOPTb(f) = r(b)−`(f)+s(f)+U
be the minimum cost to serve f by a virtual head starting at
r(b) and VirtOPTb(f) = 0 for b > f . See Figure 10.

a f b

Reading
Head

t1

t2
t(f)

VirtOPTb(f)

Delayt1,t2(f)
Tape

time

Figure 10: Illustration of t1, t2, t(f), VirtOPTb(f) and
Delayt1,t2(f) for f ≤ b.

The hypothesis is that cell T [a, b, nskip] is equal to the sum
for all files f of the impact Delayt1,t2(f) of what happens
between t1 and t2 in Sa,b,nskip on the service time of f , with
a basis corresponding to VirtualLB, i.e.,

T [a, b, nskip] =
∑
f

x(f) ·Delayt1,t2(f) (1)

with :

Delayt1,t2(f) := 0 if t(f) ≤ t1

Delayt1,t2(f) := t2 − t1 − U if t(f) > t2

Delayt1,t2(f) := t(f)− t1 −VirtOPTb(f) otherwise.

Intuitively, for files served after t2, the reading head
comes back at the place it had in t1 at time t2, with the op-
posite orientation. The delay is however not equal to t2 − t1

because we should not count the U-turn penalty here if a
skipped file on the right of b is read within the same de-
tour starting on a. Therefore, the delay equals t2 − t1 − U .
Counting the cost based on VirtualLB allowed to simplify
the computations, but in this definition it leads to a less in-
tuitive value of the delay. For files served between t1 and t2,
the file is served at t(f) and we subtract VirtOPTb(f) to
obtain the additional cost on top of the virtual lower bound.

We now show by induction on b − a that Equation (1) is
correct. First, consider T [b, b, nskip] for any b, nskip. There
are four types of files to consider.

• f = b: we have t(f) = t1 + 2s(b) + U and
VirtOPTb(f) = 2s(b) + U so Delayt1,t2(f) = 0,

• f > b and is not skipped: we have t(f) ≤ t1 so
Delayt1,t2(f) = 0,

• f > b and is skipped: we have t(f) > t2 so
Delayt1,t2(f) = 2s(b) + U − U ,

• f < b: we have t(f) > t2 so Delayt1,t2(f) = 2s(b).

Overall, there are nskip+n`(b) files who have a delay equal
to 2s(b) so:∑

f

x(f) ·Delayt1,t2(f) = 2 · s(b) · (nskip + n`(b))

= T [b, b, nskip].

This completes the base case of the induction (b−a = 0).

Now, consider T [a, b, nskip] for any values of a, b and nskip
such that a < b and assume the induction hypothesis. We
want to show that:

T [a, b, nskip] =
∑
f

x(f) ·Delayt1,t2(f).

See the supplementary material for this part of the proof.
Finally, we get by induction, for all a, b, nskip and Sa,b,nskip :

T [a, b, nskip] :=
∑
f

x(f) ·Delayt1,t2(f).

Note that Sf1,fnf
,0 is equal to the optimal solution of the

problem. So, denoting by t0 the starting time of the solution
and tmax the time at which the reading head would reach
back the right of the tape in Sf1,fnf

,0 (it may stop earlier if
the rightmost file is not skipped), we get that the content of
the cell T [f1, fnf

, 0] is equal to:

T [f1, fnf
, 0] =

∑
f

x(f) ·Delayt0,tmax
(f)

=
∑
f

x(f) · (t(f)− t0 −VirtOPTfnf
(f))

= cost(Sf1,fnf
,0)− VirtualLB.

Then, we obtain that the optimal cost is equal to OPT =
T [f1, fnf

, 0] + VirtualLB, which completes the proof.



4.5 Efficient heuristic
The complexity of DP may be prohibitive for an input con-
taining hundreds of requested files. We address this issue by
providing a lighter algorithm named LOGDP. It is equal to
DP except that when computing detourc(a, b, nskip), c is re-
stricted to be at most λ · log nreq requested files apart from b,
for a constant parameter λ. This reduces both the table di-
mensions and complexity to query a single cell so leads to a
time complexity of O(nreq · n · log2 nreq). Only detours of
span at most λ · log nreq are then considered, and the solu-
tion returned is optimal among this class of schedules. The
parameter λ can be adjusted to trade accuracy for computing
time. We note that as this solution is by definition at least as
good as GS, it is also a 3-approximation if U = 0.

5 Performance evaluation
In this section, we evaluate the performance, as the sum of
service times of its generated sequence of detours, of our ex-
act algorithm, DP, and its suboptimal version LOGDP with
a reduced complexity on a real-world dataset. We also com-
pare the performance of DP and LOGDP to existing algo-
rithms (Cardonha and Real 2018) (see Section 4.2). Aiming
for reproducibility, the source code2 and dataset3 used in this
section are made publicly available online.

5.1 Evaluated algorithms
We consider two variants of LOGDP with the λ param-
eter equal to either 1 or 5, denoted by LOGDP(1) and
LOGDP(5). We adapted the FGS, NFGS, and LOGNFGS
algorithms from (Cardonha and Real 2018) to take U-turn
penalties into account. We further modified NFGS on three
points which we believe were intended by the original au-
thors as otherwise FGS can give better solutions, contra-
dicting a claim in the paper. Details concerning our imple-
mentation can be found in the supplementary material and
in the source code. All these algorithms were implemented
in a single-thread Python program.

For each tape, each algorithm needs the following inputs:
an ordered list of indices of the files requested on the tape;
the number of requests for each requested file; the size of all
files on the tape; and the cost of the U-turn penalty.

The output of an algorithm is a list of detours where a
detour is a couple (a, b) which means that the head goes to
the left of file a then to the right of file b ≥ a. A value
of a = 0 corresponds to the leftmost requested file on the
tape. Then, we compute the sum of service times for each
file request following the sequence of detours given by each
algorithm.

5.2 Inputs from production logs
The IN2P3 Computing Center, from which our dataset
comes, uses tape storage for long-term projects in High En-
ergy Physics and Astroparticles physics. Its tape library is
currently composed of 48 TS1160 drives and can store up to
6,700 20TB IBM Jaguar E tapes.

2https://figshare.com/s/80cee4b7497d004dbc70
3https://figshare.com/s/a77d6b2687ab69416557

The raw dataset covers two weeks of activity. It contains
millions of lines of reading, writing, and update requests
with their associated timestamp. We applied several filter-
ing steps to obtain the inputs needed by the algorithms. We
restricted to reading requests, and selected a set of 169 tapes
of interest storing 3, 387, 669 files. Each tape is divided into
segments whose size and number depend on the tape. In a
segment, files and aggregates of files are described by sev-
eral features such as a position and a size. An aggregate is
a batch of related files that can be written sequentially. A
segment contains an aggregate if there is more than one file
referenced in this segment. Within an aggregate, the position
of a file is described a couple (position, offset) where the po-
sition corresponds to the beginning of the aggregate, thus the
beginning of a segment, and the offset is the relative position
of the file within the aggregate. Note that an aggregate can
span across several segments. We discarded such aggregates
and their associated requests to focus on aggregates lying
on a single segment. Reading files inside an aggregate is not
straightforward and generates a non-negligible overhead as
the head is required to go to the start of the aggregate before
reading a file.

Finally, we decided to consider that requesting a file
within an aggregate will be treated as a request to read the
whole aggregate. While this simplifies log filtering process,
this assumption also corresponds to a common optimization
strategy. Read aggregates are stored on disks when a file it
contains is read for the first time. Then, all the subsequent
accesses to files in this aggregate will avoid the large delays
induced by tapes and benefit of the smaller latency of disks.
Consequently, we replace all the file requests in a given ag-
gregate by a single request for a file of the size of this ag-
gregate. Then we associate to this file a number of requests
equal to the number of requested files in that aggregate.

To summarize, the processed dataset corresponds to a to-
tal of 119, 877 files stored on the 169 tapes. We provide more
details and statistics on this dataset in the supplementary ma-
terial. To the best of our knowledge, this is the first time that
a realistic dataset for magnetic tape storage is made publicly
avaible. In the context of the evaluation of the considered al-
gorithms, this dataset corresponds to 169 distinct instances
of LTSP to solve.

5.3 Simulation results
The evaluations presented in this section have been per-
formed on a single server with two Intel Xeon Gold 6130
CPUs with 16 cores each. To compare the performance of
the different algorithms, we use the generic performance
profile tool (Dolan and Moré 2002). We compute the cost
of each algorithm on each instance of the dataset, normal-
ize it by the optimal (DP), and report an empirical cumu-
lative distribution function. For a given algorithm and an
overhead τ expressed in percentage, we compute the frac-
tion of instances for which the algorithm has a cost at most
(1 + τ) · cost(DP), and plot these results. Therefore, the
higher the curve, the better the method. For instance, for an
overhead of τ = 10%, the performance profile shows how
often the performance of a given algorithm lies within 10%
of the optimal solution.



0.00

0.25

0.50

0.75

1.00

0.0% 2.5% 5.0% 7.5% 10.0%
Maximal overhead

Fr
ac

tio
n

of
te

st
ca

se
s

SimpleDP

LogDP(5)

LogDP(1)

FGS

NFGS

LogNFGS

GS

NoDetour

Figure 11: Performance of the algorithms, when U = 0.

We evaluate the algorithms on each of the 169 instances
for three different values of the U-turn penalty U : (i) no
penalty (ii) a penalty equals to half of the average size of
a segment in the 169 considered tapes, and (iii) a penalty
equivalent to the average size of a segment. While we have
not yet modeled seeking and reading speeds of the head,
such penalties whose values are extracted from features of
the input instances are useful to evaluate the impact of in-
creasing U on the performance of the algorithms.

Algorithms Performance Figure 11 shows the perfor-
mance profiles of the algorithms with U = 0. As expected,
GS and NODETOUR show poor performance, with an over-
head of more than 10% for NODETOUR over 60% of the
instances. The FGS, NFGS, and LOGNFGS heuristics ex-
hibit very similar performance, with an overhead of less than
2.5% over 80% of the test cases. Both variants of LOGDP
heuristic slightly outperform the other heuristics. As ex-
pected, the higher λ, the closer to optimal the solution is.
NFGS is better than LOGDP(1) on 11% on the instances,
and worse in 85%. It performs better when a single long de-
tour is largely beneficial, and out of reach of LOGDP.

Figure 12 illustrates the algorithms performance with a
U-turn penalty equal to the average size of a segment. We
see that U increases the discrepancy between the FGS-like
heuristics and LOGDP. Here, these heuristics cause at least
5% more overhead on half of the instances than LOGDP(1),
and up to 10% more overhead than LOGDP(5). The sub-
optimal solutions of LOGDP variants are more robust to
the increase of U , with an overhead of a few percent for
LOGDP(5) when compared to DP for 90% of the inputs.

Time to solution The median running times for the algo-
rithms DP, LOGDP(5), LOGDP(1), NFGS and LOGN-
FGS are around 281, 47, 5, 0.4 and 0.1 seconds respec-
tively. The other algorithms have insignificant running times
(<1ms). However, our single-thread Python implementation
was not designed with performance in mind. Estimations
based solely on the documented maximum speed of the read-
ing head leads to an average duration of 500s to schedule the
requests on one tape of the dataset with an average service
time of 80s. The observed gains thus have to be nuanced
by the required computing times of the algorithms. It should
also be noticed that the schedule computation can be done in

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30% 40% 50%
Maximal overhead

Fr
ac

tio
n

of
te

st
ca

se
s

SimpleDP

LogDP(5)

LogDP(1)

FGS

NFGS

LogNFGS

GS

NoDetour

Figure 12: Performance of the different algorithms, when U
is equal to the average segment size.

parallel to robot operations mounting the tape, so the start of
the schedule is not directly delayed by the computation time.
The characteristics of the data set (a median n > 2, 600
much larger than nreq < 150) also explain the longer run-
ning times of LOGDP as the FGS-like algorithms complex-
ity does not depend on n, see more details in the supple-
mentary material. The λ parameter can be used to obtain a
faster version of LOGDP at the cost of lower performance.
On large inputs (i.e., list of requested files greater than 100),
the cost of DP becomes prohibitive in a production context,
making LOGDP variants good replacement candidates.

6 Conclusion
In this article we studied the Linear Tape Scheduling Prob-
lem, aiming at minimizing the average service time for read
requests on a linear magnetic tape. We proposed an exact
polynomial-time dynamic programming algorithm, solving
this problem whose complexity was open until now. Then,
we derived a low-cost suboptimal algorithm, whose perfor-
mance outperforms existing heuristics on a realistic dataset
extracted from the tape library logs of a major computing
center, a dataset we make publicly available.

This dataset could also be used for related problems such
as k-server on the line for which few relevant datasets are
available (Lindermayr, Megow, and Simon 2021). The re-
maining question on the theoretical side of LTSP resides
in the dependency in n of an optimal algorithm. The obvi-
ous generalization of the problem would be to consider the
two-dimensional tape geometry, but we expect that such a
model would quickly become intractable. We also discuss in
the supplemental material how DP can be adapted to handle
two minor extensions: arbitrary starting position of the head
and a different reading speed.

Acknowledgments
We thank Pierre-Emmanuel Brinette for fruitful discussions.
Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).



References
Afrati, F.; Cosmadakis, S.; Papadimitriou, C. H.; Papageor-
giou, G.; and Papakostantinou, N. 1986. The Complexity of
the Travelling Repairman Problem. RAIRO-Theoretical In-
formatics and Applications-Informatique Théorique et Ap-
plications, 20(1): 79–87.
Atallah, M. J.; and Kosaraju, S. R. 1988. Efficient Solutions
to Some Transportation Problems with Applications to Min-
imizing Robot Arm Travel. SIAM Journal on Computing,
17(5): 849–869.
Bjelde, A.; Hackfeld, J.; Disser, Y.; Hansknecht, C.; Lip-
mann, M.; Meißner, J.; Schlöter, M.; Schewior, K.; and
Stougie, L. 2020. Tight Bounds for Online TSP on the Line.
ACM Transactions on Algorithms, 17(1): 1–58.
Bock, S. 2015. Solving the Traveling Repairman Problem on
a Line with General Processing Times and Deadlines. Euro-
pean Journal of Operational Research, 244(3): 690–703.
Cano, E.; Bahyl, V.; Caffy, C.; Cancio, G.; Davis, M.; Kee-
ble, O.; Kotlyar, V.; Leduc, J.; and Murray, S. 2021. CERN
Tape Archive: a distributed, reliable and scalable scheduling
system. In EPJ Web of Conferences, volume 251, 02037.
EDP Sciences.
Cardonha, C.; and Real, L. C. V. 2016. Online Algorithms
for the Linear Tape Scheduling Problem. In Proceedings
of the Twenty-Sixth International Conference on Automated
Planning and Scheduling. London, UK.
Cardonha, C.; and Real, L. C. V. 2018. Theoretical and Prac-
tical Aspects of the Linear Tape Scheduling Problem. CoRR,
abs/1810.09005v1.
Cardonha, C. H.; Ciré, A. A.; and Real, L. C. V. 2021. On
Exact and Approximate Policies for Linear Tape Scheduling
in Data Centers. CoRR, abs/2112.07018.
Chaudhuri, K.; Godfrey, B.; Rao, S.; and Talwar, K. 2003.
Paths, trees, and minimum latency tours. In 44th An-
nual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings., 36–45.
Chen, L.; Megow, N.; and Schewior, K. 2018. An O(m)-
Competitive Algorithm for Online Machine Minimization.
SIAM Journal on Computing, 47(6): 2057–2077.
Davis, M. C.; Bahyl, V.; Cancio, G.; Cano, E.; Leduc, J.; and
Murray, S. 2019. CERN Tape Archive – from Development
to Production Deployment. In Proceedings of the 23rd In-
ternational Conference on Computing in High Energy and
Nuclear Physics, volume 214 of EPJ Web of Conferences,
04015. EDP Sciences.
de Paepe, W. E.; Lenstra, J. K.; Sgall, J.; Sitters, R. A.; and
Stougie, L. 2004. Computer-Aided complexity Classifica-
tion of Dial-a-Ride Problems. INFORMS Journal on Com-
puting, 16(2): 120–132.
Dolan, D. E.; and Moré, J. J. 2002. Benchmarking Opti-
mization Software with Performance Profiles. Mathematical
Programming, 91(2): 201–213.
Gabay, M. 2014. High-multiplicity Scheduling and Packing
Problems : Theory and Applications. Theses, Université de
Grenoble.

Hillyer, B. K.; and Silberschatz, A. 1996. On the Modeling
and Performance Characteristics of a Serpentine Tape Drive.
ACM SIGMETRICS Performance Evaluation Review, 24(1):
170–179.
IBM. 2019. IBM System Storage Tape Drive 3592 SCSI Ref-
erence. IBM.
Karlin, A. R.; Klein, N.; and Gharan, S. O. 2021. A (slightly)
improved approximation algorithm for metric TSP. In Pro-
ceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, 32–45.
Lawler, E. L.; Lenstra, J. K.; Kan, A. H. G. R.; and Shmoys,
D. B. 1985. The traveling salesman problem: a guided tour
of combinatorial optimization. Wiley-Interscience Series in
Discrete Mathematics.
Lindermayr, A.; Megow, N.; and Simon, B. 2021. Dou-
ble Coverage with Machine-Learned Advice. arXiv preprint
arXiv:2103.01640.
Melia, G. C. 2018. LTO experiences at CERN. https:
//indico.cern.ch/event/730908/contributions/3153156/. Ac-
cessed: 2022-03-26.
More, S.; and Choudhary, A. 2000. Scheduling queries for
tape-resident data. In European Conference on Parallel Pro-
cessing, 1292–1301. Springer.
Mäsker, M.; Nagel, L.; Süß, T.; Brinkmann, A.; and Sorth, L.
2016. Simulation and Performance Analysis of the ECMWF
Tape Library System. In Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, 252–263. Salt Lake city, UT.
Reine, D.; and Kahn, M. 2015. Continuing the Search
for the Right Mix of Long-term Storage Infrastructure – a
TCO Analysis of Disk and Tape Solutions. Technical Re-
port TCG2015006, The Clipper Group, Inc. [Online, Dec.
2021]www.clipper.com/research/TCG2015006.pdf.
Sandsta, O.; and Midtstraum, R. 1999. Improving the Ac-
cess Time Performance of Serpentine Tape Drive. In Pro-
ceedings 15th International Conference on Data Engineer-
ing, 542–551. Sydney, Australia: IEEE.
Schaeffer, J.; and Casanova, A. G. 2011. TReqS: The Tape
REQuest Scheduler. In Journal of Physics: Conference Se-
ries, volume 331, 042040. IOP Publishing.
Sitters, R. 2002. The Minimum Latency Problem is NP-
hard for Weighted Trees. In Proceedings of the 9th Interna-
tional Conference on Integer Programming and Combinato-
rial Optimization, 230–239. Cambridge, MA: Springer.
Sitters, R. 2021. Polynomial Time Approximation Schemes
for the Traveling Repairman and Other Minimum Latency
Problems. SIAM Journal on Computing, 50(5): 1580–1602.
Zhang, X.; Du, D.; Hughes, J.; Kavuri, R.; and StorageTek,
S. 2006. Hptfs: A high performance tape file system. In
Proceedings of 14th NASA Goddard/23rd IEEE conference
on Mass Storage System and Technologies. Citeseer.


