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Abstract—System logs are a wealth of information that can be
leveraged to control the behaviour of a computing and storage
infrastructure, detect deviations from normal behaviour, and
react accordingly by triggering some predefined actions.

System log management usually consists of a complex workflow
that collects, standardises, indexes, stores, and visualises the log
messages to help system administration teams in their daily
operations. In large scale data centres such log management
infrastructures can collect millions if not billions of messages per
day. A key component in this workflow is the identification of
message patterns, which requests the expertise of administrators.
These patterns represent a template of both static and variable
message parts against which a new log message can be matched.
This crucial task is often done manually, but these patterns
can change frequently making it time consuming for the human
operators to keep up.

Therefore, we propose in this paper to automate the discovery
of patterns in system log messages by extending the functionalities
of an existing pattern mining framework, called Sequence. Our
main objectives are to improve both the scalability of this
framework and its capacity to be integrated into a complete
system log management workflow.

We present how we addressed six main limitations of the
seminal Sequence tool. These modifications led us to propose
Sequence-RTG (Sequence-Ready-To-Go), a more efficient and
production-ready version. We analyse its performance in terms
of both speed, using data-sets of increasing sizes, and accuracy
on data-sets from the literature. We also show that two months
after the introduction of Sequence-RTG within the system log
management framework of the IN2P3 Computing Centre we
reduced the fraction of messages that are not matched to a
pattern from 75-80% to only 15%.

I. INTRODUCTION

Large scale data centres typically operate thousands of
servers to provide scientific communities or companies with
computing and storage resources, including complex electrical
and climatic equipment to power up and cool down these
servers. Additionally multiple software services and full sys-
tem stacks are run on these machines. This amounts to tens of
thousands of individual software and hardware components.
Each of these components can inject information about its
status, issues, or current activity into system logs in the form
of unstructured or loosely structured text messages. These
messages can contain numbers, symbols, or other information,
such as URLs or IP addresses. Large scale data centres collect
millions if not billions of such system log entries every
day. This massive amount of data constitutes a wealth of
information on the activity of a data centre, provided that it
can be efficiently processed.

To manage and exploit information available in logs, system
administrators usually deploy a complex infrastructure to first
collect system logs in a unified and centralised way by
standardising the meta-data supporting these messages [1], e.g.
timestamps or server and service that generated the message.
Then, these enhanced records are usually stored, indexed, and
transformed into comprehensive graphs [2].

An important step is the detection of recurring patterns that
allows the infrastructure to either send notifications to system
or service administrators, e.g. in the event of a failure or
malfunction, or trigger some predefined actions, e.g. restart a
service or run an automated diagnostic task. In this context, a
pattern is a sequence of meaningful character strings, with both
fixed text for static parts and placeholders for variable parts,
against which the newly produced unstructured messages
injected into the log management system can be matched.

A typical approach is to compare a new log message to a
database of known patterns. However, the onus of manually
adding new patterns to this database is on the administrators.
This poses a problem of scalability and maintenance. With
each new software update or installation of new software and
hardware, new events can appear or existing events potentially
change and existing patterns must be frequently reviewed.
For instance, at the IN2P3 Computing Centre (CC-IN2P3),
one of the largest academic computing centres in France,
only 20 to 25% of the log messages were corresponding to
an entry in the pattern database before this work. In other
words, 75 to 80% of events remained unknown, and potentially
contained information important for the system administrators.

Therefore, we aim in this paper at automating the discovery
of new patterns and the creation of the corresponding entries
into the pattern database. This will allow us to increase the
number of log entries that can be matched to a known pattern,
which in turn will make searching, filtering, and data analysis
much easier. One of the main challenges is to be able to handle
the billions of messages generated each year, hence the pro-
posed framework has to be efficient and scalable. It also has to
be ready to be integrated into a more complex log management
workflow. To this end, we propose Sequence-RTG (Sequence-
Ready-to-Go), a production-ready and efficient pattern mining
tool, based on the seminal Sequence framework [3], [4], which
makes the following contributions:

• Enable the ingestion of a stream of composite messages
that collates logs from various source systems;

• Improve the quality of the created patterns by adding two
message partitioning steps before analysis;



• Make detected patterns persistent by storing them into a
database, for reuse between executions;

• Add pattern export and formatting functionalities to ease
the interaction with other log management components.

The remainder of this paper is organised as follows. Sec-
tion II gives an overview of a typical system log management
infrastructure deployed at a large scale data centre and de-
tails the pattern detection process and its related challenges.
Section III details how we extended the Sequence framework
to make it usable in production in a large data centre. In
Section IV, we analyse its performance in terms of both
speed, using data-sets of increasing sizes, and accuracy on
data-sets from the literature and show how the introduction
of Sequence-RTG within the existing system log management
framework of the CC-IN2P3 drastically reduced the fraction of
unmatched messages. Section V reviews the related work on
pattern mining in system logs. Finally, Section VI summarises
our contributions and presents some future work directions.

II. BACKGROUND

Fig. 1 shows the actual workflow of the system log manage-
ment infrastructure deployed at CC-IN2P3. It starts with the
multiple hardware sensors and software services, e.g. operat-
ing system, databases, containers, network tools, security, or
software applications, that produce systems logs. All these logs
are injected into syslog-ng, a centralised component in charge
of the uniformisation of the logs and the standardisation of
their associated metadata [1]. Then, the logs are analysed to
identify if they match with known patterns which are stored
in a database. When a pattern is recognised as known in
the incoming logs, it can trigger a predefined action or, in
many cases, it allows a small amount of information to be
extracted from the message which is passed with the message
to be stored. Otherwise, it passes through as unknown and no
automated action can be taken.

Fig. 1. Workflow of the CC-IN2P3’s log management infrastructure. It shows
a diverse subset of systems sending their log data into syslog-ng, eg, databases,
containers etc, which flows onto the pattern database which is maintained by
hand. Matched and unmatched messages are sent directly to Elasticsearch.

Human intervention from system or service administrators
is often required to identify a new pattern, define its meaning
and the related actions it triggers, and add it to the database.

The stream of system logs is then usually indexed and
stored for further analysis or forensics, here using the popular
Elasticsearch framework, which is generally combined with
Kibana and/or Grafana [5] for visualisation purposes [2].

In this paper we focus on the central part of this workflow
that lies between the log collection by syslog-ng and the
pattern database. Our objective is to automate the detection of
patterns to improve the matched/unmatched message ratio and
release the burden put on system and service administrators
to manage these patterns. For our data centre, at the start of
this project the percentage of unknown messages was sitting
around 75-80%, with a throughput of 70 million messages per
day, this leaves about 56 million messages to be analysed to
discover their patterns. Indeed, relying on human identification
and creation of new pattern entries for the database leads to
only capture a limited number of patterns.

The automatic detection of patterns, or pattern mining,
usually consists of the three following steps: (i) tokenisation
breaks a log entry into small logical pieces called tokens;
(ii) analysis compares the tokens at the same position to
ascertain the variable and static parts of the pattern; and
(iii) parsing identifies which messages belong to each pattern.

One of the key challenges in the automation of pattern
mining is that the system logs produced by the multiple servers
and services composing an infrastructure are not guaranteed
to follow any particular format. They usually comprise textual
information, which can be close to a fully formed sentence,
often using the English language (but not always). It can also
be data contained in formatted JavaScript Object Notation
(JSON), or just raw numeric data such as IP addresses,
measures of duration, and hexadecimal notation. Moreover,
the log management system is generally unaware of the chosen
format, as it is usually decided by the service developer. From
one service to another the formatting differences can be huge.
While initiatives such as the Common Event Expression [6]
have suggested a common format of log messages across all
systems would be useful, any standard format is far from being
agreed on and formalised. However, in spite of the messages
having no strict construction rules, there are sequences of text
that, in themselves, are always repeatable that can be detected
in these logs. Table I lists some of the most common elements
found in system logs along with their data types.

The diversity and structure of these components complexify
the tokenisation process. The obvious approach for natural
language texts is to split by white space, e.g. spaces and tabu-
lations, and punctuation, e.g. commas, full stop, etc. However,
these delimiters can be part of elements in log messages,
e.g. dates contain spaces, numbers can contain commas or
decimal points, MAC addresses include colons. As a result,
the tokenisation of log messages requires a more sophisticated
approach to correctly identify words and non-words alike.

Once tokens have been extracted from the raw messages,
different methods can be applied to analyse them and identify
their static and variable parts, such as frequent pattern mining,
iterative partitioning, clustering, or longest common sequence.
We review these approaches in Section V. Once the patterns



TABLE I
TYPICAL ELEMENTS FOUND IN SYSTEM LOGS AND THEIR DATA TYPES.

Element Data Type
Date and Time stamps DateTime
MAC addresses Hexadecimal
IPv6 addresses Hexadecimal
Port numbers Integer
Line numbers and counts Integer
Decimal numbers Float
Duration Text/Number
Uids and machine identifiers Text/Integer
IPv4 addresses Text
Words, Brackets, and Quotes Text
Punctuation and control characters Text
Email addresses Text
URLs with/without query strings Text
Host names and Protocols Text
Paths Text
Non-English characters Text
Full SQL request queries Text
Key/value pairs in many formats Text

have been discovered, the messages are compared one by one
against the set of known patterns to identify which pattern
they match and, if relevant, trigger further action or alert.

III. MAKING SEQUENCE READY TO GO

The proposed production-ready system logs pattern mining
framework is based on Sequence [3], which covers all the
main steps of pattern mining and parsing. For the tokenisation
of the log message, Sequence’s scanner uses three finite state
machines to determine: (i) hexadecimal tokens; (ii) datetime
tokens; and (iii) tokens composed of all of the text and number
types. Thanks to these state machines, Sequence can process
messages in a single pass which makes it incredibly fast.
Moreover, Sequence does not require any prior knowledge of
the structure of the log message, nor Regex codes to define
parts of the message. The full list of tokens that can be
identified at scan time are: Time, IPv4, IPv6, Mac Address,
Integer, Float, URL, or Literal.

After tokenisation, the Sequence analyser builds a trie with
the tokens. The trie data structure allows for very fast search
and retrieval [7]. Once the trie is built it performs a comparison
of all of the tokens positioned at the same level that share
the same parent and child nodes. During this comparison the
relevant parts are merged to produce the patterns. Some other
special types are also detected during the analysis phase, i.e.
key/value pairs, email addresses, and host names.

Finally, Sequence has its own parser to match new messages
against existing known patterns. It follows a similar process as
while learning the messages, by first tokenising the messages,
but instead of discovering patterns, it attempts to match new
messages to a known pattern.

While Sequence appears to solve most of the challenges of
the automatic detection of patterns in the system logs of a large
data centre, we identified six main limitations that prevent the
use of this tool in production:

1) Sequence expects to read from a single file from a
single source system. However, most production systems
collate the messages together and process them in real
time. Sequence-RTG thus needs to handle streamed data
coming from a mixture of services.

2) Sequence outputs discovered patterns to a text file that
is regenerated each time the analysis is performed. This
file is read back in for the parsing step, assuming
the analysis is done infrequently. To run a continuous
analysis in production, Sequence-RTG needs to collate
the output of each execution into a summary database.
This collated output is perfect for use during translation
and export to another format.

3) Sequence inserts a whitespace between each token re-
gardless of whether they were originally broken by space
or not when reconstructing patterns from tokens after
analysis [3]. This prevents the use of other parser for-
mats to establish a match between pattern and message.

4) Sequence tends to add too many variables into patterns.
Although the pattern works correctly, it can result in
redundant meta-data enhancing the log message when it
is parsed. Sequence-RTG has to minimise this.

5) Sequence stores its analysis tries in memory and, for
very large data-sets, it can exceed the allocated memory
space. Sequence-RTG thus has to control the size of
the dataset or break it into subsets during processing to
minimise this risk of terminating the program.

6) Sequence has a documented inability to parse multi-line
messages. Sequence-RTG needs to detect such messages
and make decisions about how to handle them.

In the remainder of this section, we detail all the different
modifications and extensions made to the seminal Sequence
framework to implement the proposed Sequence-RTG and
address the aforementioned limitations.

Adding a Data Stream Ingester: The complex log manage-
ment systems deployed in large scale data centres aggregate
and centralise messages from many source systems into a
single stream. Moreover, these messages are often sent in near
real time but a batch of messages is required to perform the
analysis. To this end, we added a listener for the command
line that allows the data to be piped in directly from the
log management system without any message pre-processing
required and Sequence-RTG waits to execute until the batch
size is reached. Each item in the stream is simply expected
to be using a JSON format with only two fields: service (the
source system) from where the message originated and the
unaltered log message.

Sequence-RTG then waits for a predefined batch size limit
to be reached to process the ingested data. This limit is
configurable and passed as a command line argument when
Sequence-RTG is started. This allows system administrators to
select a value adapted to their specific infrastructure. Ideally
this number represents a good balance between having enough
data to perform the comparison steps of the analysis and
preventing a memory overload caused by too many messages.



Making Patterns and Statistics Persistent: Analysing system
logs in a continuous way requires to be able to preserve
patterns between the processing of different message batches.
To this end, Sequence-RTG stores the patterns in a SQL
database in a one-to-many relationship with their related
services. We also include up to three unique examples for each
pattern which are used as test cases for the syslog-ng pattern
database or to give an insight to the system administrators as
to which types of messages will match this pattern.

We label each pattern with a unique ID which is assigned
when each message is parsed and matched. It is critical that
this ID is not only unique but reproducible for each pattern
and service. To achieve this, we compute a SHA1 hash of the
concatenated text of the pattern and the service.

Moreover, we attach a set of statistics to the messages
matched to each pattern to give a sense of the priority of each
pattern for the review and manual promotion by the system ad-
ministrators. These statistics include the number of times that
the pattern has been matched since first discovered (count),
how recently it was last matched (last matched date) and a
calculated complexity score for the pattern. The complexity
score is a guide for the quality of the pattern. For example,
patterns that consist entirely of variables with no constant part
are often overly patternised, thus increasing their probability
of being impractical. This score can then be used to select
only the strongest patterns when exporting them for review
and integration with other systems.

Addressing Whitespace Management issues in Tokenisation:
The original pattern reconstruction mechanism of Sequence
separates each token by a whitespace regardless of whether the
original message had one at that position or not. This makes
it impossible to use an external pattern parser that would not
be aware of this particular behaviour and thus hinders the
integration of Sequence in a complex workflow.

A key addition to the Sequence-RTG scanner is to record the
whitespace positions in the original message. We introduced
a new token property called isSpaceBefore. As each
message is scanned, the previous character passed to the
scanner is saved and if it is a space, this property is set to true.
we leverage this information to ensure the exact reconstruction
of the pattern structure when we create it after analysis.

Improving Quality Control and Memory Management:
Data from a centralised log management system usually come
from multiple source systems. To avoid comparing messages
from different services and minimise the risk of exceeding
the memory, we created an extension of the Analyze method
called AnalyzeByService. Fig. 2 shows the workflow of this
new method. It performs a first partitioning of the data which
groups the log records into subsets by service and then scans
the messages into token sets. These scanned messages are then
sent to the Sequence parser to see if they match an already
known pattern. If a match is found the last matched date and
the number of examples matched to this pattern are adjusted
accordingly and no further processing occurs for this message.

Any message for which a match is not found is sent on to the
analyser to be mined for new patterns. A second partitioning

Fig. 2. AnalyzeByService workflow including pattern export.

of these unmatched messages occurs based on count of tokens
in the set. Only token sets of the same length are compared in
the same analysis trie for pattern discovery. The newly found
patterns are eventually saved in the database for comparison
against subsequent batches and exporting.

Using this new method and performing the two rounds of
partitioning has the added side effect of better quality patterns
compared with processing them as a single group.

Handling Multi-Line Messages Properly: A documented
limitation to the original Sequence scanner is its inability to
process multi-line log messages. Indeed, Sequence interprets
a line break as the end of a message, resulting in a multi-line
message being seen as multiple messages. Thanks to its JSON
format Sequence-RTG can process the complete message as
one unit. However, this can lead to a new set of challenges.
For instance, the longest message we saw has 864 tokens.
This introduces a risk that the size of the trie needed to
analyse such large messages exceeds the available memory.
After reviewing the small number of multi-line messages that
occurred in our data centre, we decided to process them only
to the first line break, create a pattern only for that first line,
and add a marker that instruct the parser to ignore all the
remaining text. This provided us with enough information to
categorise the messages correctly without having the overhead
of processing a very large number of tokens.

Exporting the Patterns for Other Parsers: The patterns
stored in the database and output by Sequence are clear, simple
strings with the variables being delimited by the % character.
One example is shown below:

%action% from %srcip% port %srcport%

While this format is tailored for the Sequence parser, it does
not contain enough information to be used in an existing log
management system. Therefore we developed a new function
(ExportPatterns) that can be run on-demand or period-
ically by system administrators when they want to review
patterns. The objective is to be able to either directly use the
exported patterns in another component of the log management
workflow or allow for a manual review of a selected subset
of the patterns deemed to be the most useful or correct. We
considered three popular formats for use with two common log



management tools. Fig. 3 shows the same pattern formatted
for syslog-ng’s pattern database. The transformed Sequence
pattern can be found under the pattern tag, but we also include
some test cases from the saved examples in the database and
the collected statistics. These test cases are used by syslog-ng
to ensure that all the example messages match their pattern,
and no other in the whole pattern database.

Fig. 3. Fully formatted pattern with test cases for syslog-ng’s pattern database.
See [8] for more information on the pattern field formats.

We also implemented a YAML version that can be used
alongside a DevOps tool such as Puppet to build the pattern
database XML. YAML can be easier to use if files are main-
tained by hand, therefore it may be the preferred format before
automation. Finally, we also added the ability to translate the
patterns into the Grok format for Logstash as shown in Fig. 4.
Selecting the pattern export format is a command-line flag and
can be changed by administrators on a per run basis.

Fig. 4. Pattern formatted for Logstash’s Grok [9].

IV. EVALUATION

To evaluate the proposed Sequence-RTG pattern mining
tool we start by assessing the performance of the newly
introduced AnalyzeByService method. Then, we measure the
acccuracy of Sequence-RTG on various data-sets from the
LogHub collection [10] and compare it with the different
approaches studied in [11]. We also show how Sequence-RTG
can be integrated into a complex log management workflow
and reduces the fraction of unmatched messages. Finally, we
discuss the current limitations of Sequence-RTG.

Performance of the AnalyseByService Method: To ensure
that the new AnalyzeByService method could easily handle
the volume of data produced in an actual production system
at a large data centre, we ran some performance tests on a
Windows 10 Professional laptop, with one Intel Core i7-6500
2.60GHz CPU and 8GB RAM and a 500GB SSD hard drive

using version 1.12 of Go. Note that we excluded the export
of the patterns to a file for use with another log management
system, as this is unlikely to be the performance bottleneck in
a complete log management workflow.

Fig. 5 shows the evolution of the time taken respectively by
the Sequence Analyze and Sequence-RTG AnalyzeByService
methods to process data-sets of different sizes. The tests were
run with an empty pattern database, so all records would be
sent for analysis. The rationale is that if a subset were first
removed during parsing, the method would complete more
quickly. Instead, we want to measure the maximum likely
running time in this experiment.
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Fig. 5. Evolution of Sequence Analyze and Sequence-RTG AnalyzeByService
processing time with data set size. The datasets contained an average of 241
unique services.

We can see that the Sequence-RTG AnalyzeByService
method clearly outperforms the original Analyze method of
Sequence, whose performance starts to degrade for data-sets
larger than 3 million entries. However, we can also note
a similar performance degradation for the AnalyzeByService
method for for the largest data set comprising 13.25 million log
entries. This performance loss is likely due to the load induced
by having a very large analyser trie to store in memory. This
advocates for splitting the input stream of messages in batches
to control the size of the trie, as explained in the previous
section, and keep a reasonable processing time. According
to these results a batch size of 100,000 messages seems
appropriate for a use in production at CC-IN2P3.

Accuracy: To evaluate the accuracy of Sequence-RTG in
both the discovery of a unique pattern for each type of
message, or event, and the subsequent matching of messages
to that pattern, we rely on a set of labelled log files from
the LogHub collection [10] previously used to compare log
parsers [11]. This collection contains log files from 16 different
services each with 2,000 entries. It includes both the original
system log file and a CSV file with the records pre-processed
and labelled by a domain expert, which can be mapped to
each other using line numbers [12]. The labelling involved
tagging each log message with an event id (e.g. E1, E2, . . . )
to indicate which pattern or event they represent. We followed
the same methodology detailed by Zhu et al. [11], who define
the related accuracy score as the ratio of correctly matched
log messages over the total number of log messages. This is
done by evaluating if the event label in the pre-processed file



matches the event determined by the tool under evaluation.
By using the event label directly, we ensured comparison
remained fair in spite of not following the same pre-processing
steps.

Table II shows the achieved accuracy scores for two differ-
ent versions of log messages. First, we used the same pre-
processed version of the logs as in [11], which had been
modified to identify field types such as date, numbers, and
other common fields that can be difficult to parse, and replace
them with a <*> marker. Second, we use the full and unaltered
log messages to measure how Sequence-RTG performs on
messages coming directly from their production source in a
continuous stream.

TABLE II
ACCURACY OF THE SEQUENCE-RTG PARSER USING PRE-PROCESSED

DATA AND RAW LOG FILES COMPARED WITH THAT OF THE BEST PARSER
FROM [11] FOR EACH DATA-SET. IN BOLD ARE THE SCORES FOR

SEQUENCE-RTG THAT EQUALLED OR EXCEEDED THE BEST SCORE.

Dataset Pre-processed Raw Logs Best
HDFS 0.941 0.942 1

Hadoop 0.975 0.898 0.957
Spark 0.979 0.979 0.994

Zookeeper 0.971 0.977 0.967
OpenStack 0.794 0.825 0.871

BGL 0.948 0.948 0.963
HPC 0.739 0.801 0.903

Thunderb. 0.971 0.969 0.955
Windows 0.993 0.993 0.997

Linux 0.702 0.701 0.701
Mac 0.925 0.924 0.872

Android 0.878 0.880 0.919
HealthApp 0.968 0.689 0.822

Apache 1 1 1
OpenSSH 0.975 0.975 0.925
Proxifier 0.643 0.402 0.967
Average 0.901 0.869 0.865

We can see that Sequence-RTG leads to equal or better
accuracy than the best algorithm in [11] for 8 out of the
16 considered data-sets. For most of the other data-sets,
Sequence-RTG achieves very similar levels of accuracy.

This accuracy is preserved with the use of the raw log data,
but for two data-sets which stand out as having a significant
accuracy drop: Health App and Proxifier. With the Health
App logs, Sequence-RTG was unable to correctly process
their datetime stamp which involved time-parts without a
leading zero for single digit hour, minute, or second values(e.g.
20171224-0:7:20:444). Proxifier had a variable that was some-
times alphanumeric and sometimes pure integer. This resulted
in two patterns created for one event, rendering nearly 50%
of the results invalid.

Integrating Sequence-RTG in a Production Workflow:
Fig. 6 illustrates how Sequence-RTG fits into a production
log management workflow: syslog-ng reads, parses, and filters
logs from sources and routes them to destinations. When a
log has to be written, syslog-ng starts Sequence-RTG (or uses
an already running instance) and pipes the log to its standard
input. Sequence-RTG is thus a child process of syslog-ng. This

service runs a 8-vCPU virtual machine instance hosted on an
Intel Xeon Gold 5215@2.50GHz CPU and consumes half the
resources of a vCPU on average.

Only the unmatched messages are sent to Sequence-RTG
after first being parsed by the pattern database of syslog-ng.
Indeed, there is no benefit from mining already known log
messages. Moreover, this will lighten the load on Sequence-
RTG over time as more patterns are discovered and promoted.

Fig. 6. Log management workflow after the integration of Sequence-RTG.
This shows how the workflow has changed from Fig. 1 Matched messages
are sent directly to Elasticsearch as before, but the unmatched messages
pass through Sequence-RTG for pattern analysis beforehand. Sequence-RTG
generates a pattern file for review and promotion.

System administrators are still involved in the review and
promotion process of the new patterns to production. However,
the overhead of creating these patterns directly from the
syslog-ng outputs has virtually disappeared. The only remain-
ing tasks consists in copy-pasting the patterns generated by
Sequence-RTG and modify them slightly if need be. Moreover,
it allows the system administrators to dedicate some time
to add any related actions, such as new alerts during the
promotion of patterns. The estimated gain with regard to
maintaining the patterns entirely by hand as it was done before
the integration of Sequence-RTG is roughly estimated to a day
per month for one person.

As an aside, this workflow is how we have implemented
Sequence-RTG at the CC-IN2P3. It is possible, however, to
use Sequence-RTG as an ad-hoc service that is run only when
needed from a file of messages to make patterns to save doing
it by hand, or to run from unknown messages once a month to
keep on top of system changes. With this in mind, the review
process can also be an optional step, for us this is to mitigate
cases where the optimal pattern has not been discovered and
to ensure actions are added when needed. If a user prefers, this
output file from Sequence-RTG can be automatically deployed
to the patterndb or Logstash config and used without review.

Impact of Sequence-RTG on Unmatched Messages: Imple-
menting the scenario in Fig. 6 at CC-IN2P3 allowed us to run
Sequence-RTG in a continuous way while exporting patterns
on demand when system administrators had the capacity to
review and promote some of them into the pattern database.



Fig. 7. Evolution of matched/unmatched message ratio after the introduction
of Sequence-RTG.

Fig. 7 shows that over 60 days, thanks to Sequence-RTG and
with a small investment in time to review the patterns from
the system administration team, the percentage of unknown
messages dropped down to approximately 15%. We found
occasionally, thanks to the pattern database format, that during
evaluation with its test cases, they would match more than one
pattern. In these instances, the most correct pattern would be
promoted and the other discarded.

With a workload oscillating between 70 and 100 million log
messages per day and using a batch size of 100,000 records,
the average running time of Sequence-RTG for the analysis of
messages was of 7.5 seconds over the last year. The wait time
between executions of the analysis process was initially of
approximately 15 minutes, i.e. the time to get a full batch. As
new patterns were promoted, the volume of unknown messages
in the input stream automatically decreased over time. As
a result, the time to fill a full batch of 100,000 unknown
messages and invoking Sequence-RTG to run a new analysis
increased to about 25-30 minutes.

This study also showed that a single instance of Sequence-
RTG was enough to keep pace with the considered workload.
However, if the capacity of Sequence-RTG needed to be scaled
up, the messages could be divided simply by sending groups
of services to any number instances of Sequence-RTG, thanks
to the newly introduced AnalyzeByService method. In this
case each instance could have its own database as there is
no crossover with patterns between different services.

Limitations: During our evaluation of Sequence-RTG, we
identified three particular types of data that cause problems
with the patternisation of the messages. First some path strings
are processed correctly but some may remain as static text
and generate multiple patterns for a single event. Second,
processing the raw logs of the Health App data-set showed the
DateTime finite state machine of Sequence cannot correctly
detect time stamps where the leading zero on a time part is
not present. Third, alphanumeric fields where it is common
for the data to be fully numeric in some cases may result in
the production of two patterns for the same event. Such fields
were present in the Proxifier log with entries of 64 or 64* for
the same position in messages representing the same event. If
the pattern is being reviewed by a system administrator these
can be merged, but otherwise it would result in logging these
as separate events.

We also occasionally found log messages that contain fields
delimited by the % sign, which Sequence uses to delimit its to-
kens. If these remain in the pattern as static text, unfortunately
they will cause an unknown tag error at parsing time.

Lastly, Sequence-RTG unfortunately struggles to find pat-
terns if only one or two examples of the message is present.
In this case the message can become under-tokenised or can
be entered as a word for word pattern if no tokens are found
during the scan step. This can be monitored by setting a save
threshold. Any pattern whose count of matches is less than
the threshold is considered useless and thus not saved.

V. RELATED WORK

The accurate and efficient parsing of system log messages
has been a challenging area of research over many decades.
Many research teams and corporate companies have proposed
solutions with varying levels of accuracy and maintenance cost
to the administration team. Some commercial systems offer
pre-defined patterns for known log file types, often based on
Regular Expressions (RegEx) [2], [13] which can lighten the
load of maintenance, but for large data centres this is usually
not sufficient to cover all the systems in use.

With the growth of text mining and machine learning
techniques, several works have proposed that log patterns
could be learned or mined, reducing the need for creating these
patterns by hand or maintaining a library from known systems.
In 2018 Zhu et al. compared thirteen log parsers documented
in previous research studies over the last fifteen years [11].
They identified six different approaches among the thirteen
parsers: frequent pattern mining [14]–[16], heuristics [17],
iterative partitioning [18], clustering [19]–[22], longest com-
mon sequence [23], parsing tree [24], and an evolutionary
algorithm [25]. The most frequently used are frequent pattern
mining and clustering.

These different techniques have varied levels of accuracy
on logs from diverse systems. Some of these algorithms also
need some pre-processing of the log messages to ensure
good results. Zhu et al. thus pre-processed the logs using
some simple RegEx to determine common fields such as IP
address, datetime and replace them with <*> before passing
the messages to the algorithms for pattern discovery. While
this does help with the accuracy of the automatic processing,
this step requires manual intervention by domain experts,
which adds to the maintenance cost of the system.

Once the messages had been categorised by each algorithm,
they measured the accuracy using the ratio of correctly parsed
log messages over the total number of log messages. Table III,
taken from [11], shows these accuracy results for the top
four performing algorithms, based on their average score
for accuracy across the 16 system log files tested, namely
Drain [24], IPLoM [18], AEL [17], and Spell [23].

The Drain algorithm [24] is ranked best overall. It is an
online algorithm, i.e. it processes each record, one by one, as
they are submitted. After a pre-processing step, the message
is tokenised and sent to a fixed depth parsing tree, created
from other messages of the same token length, to determine



TABLE III
ACCURACY RESULTS FROM [11] USING PRE-PROCESSED DATA [12] FOR

THE TOP FOUR METHODS. FOR EACH DATASET THE MOST ACCURATE
ALGORITHM(S) AMONG THE 13 TESTED IS IN BOLD.

Dataset AEL IPLoM Spell Drain
HDFS 0.998 1 1 0.998

Hadoop 0.538 0.954 0.778 0.948
Spark 0.905 0.920 0.905 0.920

Zookeeper 0.921 0.962 0.964 0.967
OpenStack 0.758 0.871 0.764 0.733

BGL 0.758 0.939 0.787 0.963
HPC 0.903 0.824 0.654 0.887

Thunderb. 0.941 0.663 0.844 0.955
Windows 0.690 0.567 0.989 0.997

Linux 0.673 0.672 0.605 0.690
Mac 0.764 0.673 0.757 0.787

Android 0.682 0.712 0.919 0.911
HealthApp 0.568 0.822 0.639 0.780

Apache 1 1 1 1
OpenSSH 0.538 0.802 0.554 0.788
Proxifier 0.518 0.515 0.527 0.527
Average 0.754 0.777 0.751 0.865

the pattern that it best matches. If no match is found, it adds
a new path in the tree.

The second top performer is an iterative partitioning ap-
proach to find clusters of similarly formatted messages called
IPLoM [18]. After tokenising, the algorithm takes four steps.
First, it clusters the token sets that are of the same length, then
it builds sub-clusters based on token position. In other words, it
looks for a word that is common at the same position of many
messages. The third step searches for bijective relationships
between two tokens, i.e. where the two values are always the
same in their respective positions. The last step is to output
the pattern. If all the values at the same position are the same,
it is constant in the pattern, if there is a high variation, then
it is marked as a variable.

AEL [17] is a log abstraction algorithm made of three steps:
Anonymize, Tokenize, and Categorize. The Anonymize step
uses simple heuristics to identify variables in the messages
defined by text that followed an equal sign or certain keywords.
These values are replaced in the log message with a variable
marker. The Tokenize method divides the messages into groups
based on the count of words and number of variables marked
in the text. Finally the Categorize method compares the
contents inside each group to determine the patterns.

The online approach followed by Spell [23] performs to-
kenisation using spaces and the equal sign as stop characters
for defining the tokens. For the analysis phase, it uses a longest
common subsequence methodology to build a map of the
tokens. As with Drain, each new message is tested to see if it
matches a pattern already in the map, otherwise a new pattern
entry is added.

While the aforementioned tools are promising candidates
for solving our challenges, they all require a pre-processing of
log messages. This raises real concerns about the maintenance
needed to stay ahead of the constant change experienced in
our data centre. Conversely, the documentation and early tests

with Sequence showed that it could use the raw log messages
and still provide robust results. This motivated our choice to
to extend this framework with the hope of achieving a level
of accuracy in line with the state of the art.

VI. CONCLUSION

Leveraging the wealth of information contained in system
logs can ease the daily operations of system administrators in
large data centres by allowing the automatic raising of alerts
or triggering of predefined actions. However, this requires
identifying the recurring patterns in these logs, a task that
often remains manual as it requires some expert knowledge.

To reduce this burden put on humans, we proposed in this
paper to extend an existing pattern mining framework called
Sequence. We identified and addressed several limitations of
this tool to propose Sequence-Ready-To-Go, a more efficient
and production-ready version of this framework. One of the
main advantages of Sequence-RTG is its capacity to be in-
tegrated to a complete log management workflow used in
production in a large data centre to assist in the discovery of
patterns for keeping the pattern database up to date. Sequence-
RTG can also be used as a stand-alone product thanks to its
own built-in parser.

Our evaluation of the performance of Sequence-RTG
showed it is comparable in accuracy to other methods for
system log message parsing available today, while being
efficient and able to support a high throughput of data which
is critical for a large data centre such as the CC-IN2P3. Once
integrated into our log management workflow, Sequence-RTG
allowed us to match over 60% of the system log messages
generated each day to a pattern, and thus reduce the fraction
of messages that are not matched to a pattern from 75-80% to
only 15%, with only a small time investment from the system
administators to review and promote the patterns.

As future work, we aim at addressing the remaining lim-
itations of Sequence that we listed in Section IV. First, we
will have to review and modify the date/time state machine
to make it accept single digit time parts. We also would
like to implement a fourth finite state machine to deal with
the many variations of what can be considered as a "path".
Another interesting feature would be to consider tokens that
exhibit semi-constant values. In other words, tokens for which
a variable only takes a few different values. In the current
version of Sequence-RTG, a single pattern will be identified.
However, it would be more interesting to create as many
patterns as there are variations of this semi-constant variable,
each pattern having a constant value at its position.

Finally, we plan to go further in the exploitation of system
logs and apply statistical and/or machine learning algorithms
to the logs to distinguish what could be an anomaly from what
is likely to be routine extra load when there are important
variations in the number of issued system log entries. The
massive volume of logs and the capacity to be integrated into
a production workflow will again be important concerns in the
development of such an anomaly detection tool.



AVAILABILITY

Sequence-RTG has been developed in Open Source, under
the Apache License, Version 2.0 and is publicly available
online on GitHub. To ensure the reproduction and further
investigation of the presented code and results, we also pre-
pared an experimental artifact that comprises a copy of the
data and notebooks used in the accuracy testing. It includes
a folder containing original data from [12], in the event this
changes from time of writing. It also contains, for each service,
two JSON files, i.e. pre-processed data and full log text, and
Jupyter notebooks that show how we evaluate these files, and
a CSV file for each service to map Sequence-RTG pattern-
ids to the corresponding labels in the original data-set. This
artifact is available online on figshare.
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