
Automated Calibration of a Simulator of MPI
Application Executions

Yick Ching Wong∗, Frédéric Suter†, Kshitij Mehta†, Henri Casanova∗ and Jesse McDonald∗
∗ University of Hawai‘i at Mānoa, Honolulu, HI, USA

email: {wongy, henric, jamcd}@hawaii.edu
† Oak Ridge National Laboratory, Oak Ridge, TN, USA

email: {suterf, mehtakv}@ornl.gov

Abstract—The traditional approach for assessing the perfor-
mance of scientific applications on HPC platforms consists in exe-
cuting these applications on these platforms. But conducting these
real-world experiments comes with several difficulties. Besides
being often time-, labor-, and resource-intensive, experiments
are limited to application and platform configurations at hand,
thus precluding the exploration of “what if?” scenarios. A way
to resolve these difficulties is to resort to simulation. The main
concern, then, is that of simulation accuracy. For a simulation
to be accurate, the parameters that define the behavior of the
simulation models can be calibrated with respect to ground-
truth executions. Simulation calibration, in the current state of
the art, relies, at best, on labor-intensive manual procedures.
We propose an automated simulation calibration approach, and
apply this approach to the specific context of the simulation of
MPI applications on leadership class HPC platforms. This poster
will motivate the development of this approach and detail our
methodology and results.

I. INTRODUCTION

High-Performance Computing (HPC) applications are key
to tackling scientific problems, the solutions to which enable
groundbreaking research and innovation. It is crucial for the
performance behaviors of these applications on HPC platforms
be well understood to identify bottlenecks, guide resource
provisioning decisions, application configuration decisions,
and the coordination of application execution campaigns.
Due the current and increasing complexity of modern HPC
platforms and applications, the most reliable approach to
conduct performance assessments is to run real applications
on real platforms. Unfortunately, this approach faces several
challenges. First, real-world experiments are typically time-,
labor-, and resource-intensive, which can prevent comprehen-
sive performance assessment. Second, these experiments are
subject to platform “noise” and can be impacted by platform
unavailability periods and reconfigurations/upgrades. Third,
real-world executions are not always perfectly observable due
to limits of what logging features are implemented in the
applications and/or deployed on the platform. Fourth, and

This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a non-exclusive, paid up, irrevocable, world-
wide license to publish or reproduce the published form of the manuscript, or
allow others to do so, for U.S. Government purposes. The DOE will provide
public access to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

perhaps most important, the scope of real-world experiments
are limited to whatever application and platform configurations
are available. That is, they cannot be used to explore “what
if?” scenarios (e.g., running experiments at larger scales than
that of the currently available platforms).

A way to obviate the above experimental challenges is to re-
sort to simulation, as a replacement or in addition to real-world
experiments for conducting performance assessment. Simula-
tion experiments are perfectly repeatable and observable, are
almost always less time-, labor-, and resource-intensive than
real-world experiments, and can be conducted for arbitrary
application and platform settings. The main concern with
simulation is accuracy. A simulation implements simulation
models that abstract the performance behavior of software
and hardware components of the real-world system. These
simulation models, to allow for versatility, come with configu-
ration parameters that influence their behaviors. The accuracy
of simulation results, i.e., whether simulated executions are in
line with real-world executions, depends on the chosen values
for these simulation model parameters. Choosing these values
is not easy because many parameters do not map directly to the
hardware and software characteristics of the components of the
real-world system due to the abstraction inherent in the mod-
els. The way to choose good parameter values is to calibrate
simulation parameters with respect to ground-truth real-world
executions. An exploration of the simulation calibration state
of the art, in the field of parallel and distributed computing,
reveals that simulation parameter calibration is often not done,
or done via labor-intensive, mostly manual procedures [1].

In this work we develop a method for automated simulation
calibration, and apply this method in the context of MPI
application. Specifically, we focus on the SMPI simulator [2],
for simulating executions on the Summit supercomputer at
the Oak Ridge Leadership Computing Facility (OLCF), using
ground-truth execution data obtained by executing the Intel
MPI benchmarks on this platform. Details on our methodology
are given in the next section.

II. METHODOLOGY

To investigate the feasibility and usefulness of automated
simulation calibration, we require ground-truth data from the
execution of MPI applications or benchmarks, a simulator of
MPI application executions, and a calibrator that automatically



discovers good values for the configuration parameters of the
simulator. We detail these three components hereafter:
Ground-Truth Data – For this work, we have chosen the
Intel® MPI benchmark suite, a set of benchmark MPI pro-
grams that measures the performance of point-to-point and
global communication operations. We have opted for using
these benchmarks for our ground-truth data as they are freely
available, can be executed at arbitrary scales and for arbitrary
message sizes, and are straightforward to install and run on
any platform. As a result, they can be used to obtain large
and diverse ground-truth datasets. Our main hypothesis is that
these datasets sufficiently capture communication performance
behaviors for calibrating our simulator so that it can accurately
simulate the execution of arbitrary MPI applications. We have
obtained a large ground-truth dataset, for both point-to-point
and collective communications, by running these benchmarks
on the Summit platform at the Oak Ridge Leadership Com-
puting Facility (OLCF).
Simulator – We use the SMPI simulator [2] provided as
part of the popular SimGrid [3] simulation framework, which
implements accurate and scalable foundational simulation
models. SMPI allows for the simulation of unmodified MPI
applications, such as the above MPI benchmarks, on arbitrary
platform configurations. SimGrid also provides a program-
matic API to specify simulation compute platforms, which
has allowed us to describe Summit in under 80 lines of C++
code. The MPI benchmarks repeat many iterations of the
same communication operations because real-world platforms
are subject to “noise”, making performance experiments not
completely deterministic and reproducible. As a result, these
benchmarks run for a significant amount of time. Although
SMPI is relatively fast, to perform calibration we need to
simulate possibly enormous numbers of benchmark execu-
tions (to search for the best simulation parameter values in
a large, multi-dimensional parameter space). Because simu-
lated benchmark executions are perfectly deterministic, unlike
their real-world counterparts, we can obtain valid (simulated)
performance results with only a few iterations. We have
thus modified the benchmark implementation to detect when
performance measures have converged to a fixed value and
terminate without completing any further iterations.
Calibrator – We use the SimCal (code on GitHub [4])
simulator calibration framework. It provides a Python API
for specifying simulation parameter spaces to invoke any
arbitrary simulator configured by these parameters and to
define arbitrary simulation accuracy metrics as loss functions.
It implements several calibration algorithms that attempt to
minimize the loss function over the parameter space: grid
search, random search, gradient descent, and Bayesian op-
timization. Using SimCal has made it possible for us to
implement our simulation calibration procedure in under 200
lines of Python, the goal being to calibrate 29 parameters: 21
parameters that configure the behavior of the SMPI simulation
kernel; 6 parameters that specify the hardware characteristics
of compute nodes in the simulated platform; and 2 parameters
that specify the hardware characteristics of the interconnect.

We define our loss function as the explained variance between
the real-world and the simulated data transfer rates in MB/sec.

Given the above three components, we can now evaluate the
effectiveness of automated simulation calibration. At the time
of writing, evaluation experiments are underway, according to
the following evaluation plan:

1) The initial valuation focuses on a subset of the MPI
benchmarks, namely the IMB-P2P point-to-point com-
munication benchmarks, which includes shared memory
transport: PingPing, PingPong, Birandom, Corandom,
SendRecv Replace, Unirandom, Stencil2D, Stencil3D.
We will execute these benchmarks on messages size
ranging from 1B to 4MB.

2) A subset of the ground-truth benchmark executions
(Stencil2D, Stencil3D) will be held back as a validation
set to verify the accuracy of the automatically calibrated
simulator when used to simulate scenarios that were not
included in the calibration process.

3) We will compare the quality of the calibration when
computed with the different algorithms described above,
as well as when determined by a human expert.

4) There is an intriguing tension between the amount of
ground-truth used to compute the calibration and the
ability to explore the parameter space. More ground-
truth data is desirable to ensure that the obtained cali-
bration is generalizable. But more ground-truth data also
increases the loss function evaluation time (due to the
need to run more simulations for this evaluation), which
hinders the parameter space exploration. As a result,
given a time budget to compute the calibration, the
question of how much ground-truth data should be used
is not straightforward. We will explore this question by
performing calibration with different amounts of ground-
truth data for our particular use case.

The results from the above evaluation will yield not only a
calibrated simulator for our particular use case on Summit,
but also findings regarding the amount of ground-truth data
and the calibration algorithms that are the most effective.

ACKNOWLEDGEMENTS

This research is partially supported by Laboratory Directed
Research and Development Strategic Hire funding No. 11134
from Oak Ridge National Laboratory, provided by the Direc-
tor, Office of Science, of the U.S. Department of Energy.

REFERENCES

[1] J. McDonald, M. Horzela, F. Suter, and H. Casanova, “Automated
Calibration of Parallel and Distributed Computing Simulators: A Case
Study,” in Proc. of the 25th IEEE Int. Workshop on Parallel and
Distributed Scientific and Engineering Computing (PDSEC), 2024.
[Online]. Available: https://arxiv.org/abs/2403.13918

[2] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell,
and F. Suter, “Simulating MPI applications: the SMPI approach,” IEEE
TPDS, vol. 18, no. 8, pp. 2387–2400, 2017.

[3] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Versa-
tile, Scalable, and Accurate Simulation of Distributed Applications and
Platforms,” JPDC, vol. 74, no. 10, pp. 2899 – 2917, 2014.

[4] “The SimCal simulator calibration framework,” https://github.com/
wrench-project/Grand-Unified-Calibration-Framework, 2024.

https://arxiv.org/abs/2403.13918
https://github.com/wrench-project/Grand-Unified-Calibration-Framework
https://github.com/wrench-project/Grand-Unified-Calibration-Framework

	Introduction
	Methodology
	References

