
Lowering Entry Barriers to Developing Custom Simulators of
Distributed Applications and Platforms with SimGrid*

Henri Casanova1, Arnaud Giersch2, Arnaud Legrand3, Martin Quinson4, Frédéric Suter5

1Information and Computer Sciences, University of Hawai‘i at Manoa, Honolulu, HI, USA
2Université Marie et Louis Pasteur, CNRS, Institut FEMTO-ST, F-90000 Belfort, France

3Université Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, Grenoble, France
4Rennes University, Inria, IRISA, Rennes, France

5Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Researchers in parallel and distributed computing (PDC)
often resort to simulation because experiments conducted
using a simulator can be for arbitrary experimental sce-
narios, are less resource-, labor-, and time-consuming than
their real-world counterparts, and are perfectly repeatable
and observable. Many frameworks have been developed to
ease the development of PDC simulators, and these frame-
works provide different levels of accuracy, scalability, ver-
satility, extensibility, and usability. The SimGrid frame-
work has been used by many PDC researchers to produce a
wide range of simulators for over two decades. Its popular-
ity is due to a large emphasis placed on accuracy, scalabil-
ity, and versatility, and is in spite of shortcomings in terms
of extensibility and usability. Although SimGrid provides
sensible simulation models for the common case, it was
difficult for users to extend these models to meet domain-
specific needs. Furthermore, SimGrid only provided rel-
atively low-level simulation abstractions, making the im-
plementation of a simulator of a complex system a labor-
intensive undertaking. In this work we describe develop-
ments in the last decade that have contributed to vastly
improving extensibility and usability, thus lowering or re-
moving entry barriers for users to develop custom SimGrid
simulators.

1 Introduction

Many parallel and distributed computing (PDC) research
results are obtained, at least in part, based on experiments

*This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclu-
sive, paid-up, irrevocable, worldwide license to publish or reproduce the
published form of this manuscript, or allow others to do so, for US gov-
ernment purposes. DOE will provide public access to these results of fed-
erally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doepublic-access-plan).

conducted in simulation. Reasons for PDC researchers
to use simulation are: the ability to explore arbitrary ex-
perimental scenarios; the fact that simulation experiments
can be less labor-, time- and resource-intensive than their
real-world counterparts; and the fact that simulation ex-
periments can be precisely controlled and instrumented,
making them perfectly observable and repeatable. Many
discrete-event simulation frameworks have been devel-
oped to provide abstractions and models for compute,
communication, and I/O resources and their usage, thus
easing the implementation of PDC simulators. The main
concerns for these framework are: (i) accuracy – do their
simulation models make it possible for the simulated be-
havior to match that of the real-world system being simu-
lated? (ii) scalability – do they allow the simulation of large
and long-running scenarios with low computational com-
plexity and memory footprint? (iii) versatility – can they be
used to develop simulators for a diverse range of PDC sce-
narios and domains? (iv) extensibility – can their simulation
models be configured, extended, or even replaced so that
the simulator can serve specific purposes? and (v) usability
– do they make it possible to implement simulators with
low software engineering and development effort?

PDC simulation frameworks have been developed for
decades, placing different levels of emphasis on and us-
ing different approaches for achieving compromises be-
tween these often conflicting concerns. For instance, a pos-
sible approach for achieving higher accuracy is to imple-
ment the simulation at a higher level of detail, but doing
so typically increases computational complexity and mem-
ory footprint, thus reducing scalability. A way to increase
scalability is to target a specific PDC domain, which makes
it possible to eschew simulating features of the real-world
system that are not relevant to that specific domain. For in-
stance, when simulating an IoT system in which only small
messages are exchanged, one can forgo the simulation of
network contention effects and still produce meaningful re-
sults. But doing so reduces versatility by design.

The SimGrid framework [1] has demonstrated that it is

1

http://energy.gov/downloads/doepublic-access-plan

Cluster Distributed Cloud IoT Multi-Core/GPU
Target platform

0

20

40

60

80

100
Nu

m
be

r o
f r

es
ea

rc
h

pu
bl

ica
tio

ns
PDC domains

Algorithms, Applications, Systems
Architecture, Networking
Scheduling
Green Computing
Modeling, Simulation
Other

Figure 1: Publication counts by PDC domains and plat-
forms for 176 research publications between 2016 and 2022
that include SimGrid-driven simulation results. The sum
of the counts is larger than 176 because some publications
target multiple domains and/or platform scenarios.

possible to design and implement a simulation framework
that achieves high accuracy, scalability, and versatility, as
shown in the reference SimGrid paper published in 2014 [2]
and in many validation studies [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15].

In [2] it is claimed that SimGrid could be used to de-
velop simulators for a broad range of PDC domains, thus
achieving versatility. We keep track of research publica-
tions that include simulation results obtained with the Sim-
Grid software [16], which makes it possible to verify the
validity of that claim. Figure 1 shows the counts of the 176
research publications between 2016 and 2022 that use Sim-
Grid (out of 646 such publications to date since 2001). We
have categorized each publication by target PDC domain
and target platform scenario based on our own inspection
of each publication’s content. The "Other" category for the
target PDC domains includes publications that focus on
fault-tolerance, model-checking, security, and education.
Although our categorization of some research publications
may not be 100% accurate, the counts clearly show Sim-
Grid’s versatility.

Despite its popularity, SimGrid had severe shortcom-
ings in terms of extensibility and usability. First, it was
difficult for users to customize, extend, let alone replace,
simulation models. While these simulation models are
sensible for the common case, the range of research ques-
tions that users seek to answer using simulation is large
and often requires going beyond SimGrid’s extant mod-
els. Second, SimGrid only provided relatively low-level
simulation abstractions and corresponding APIs. These
shortcomings were seen plainly in user-provided feedback
and through direct interactions with users during SimGrid-
focused events and hackathons, and also mentioned in the
literature [17]. Then, implementing a simulator of custom

and/or complex systems often required large software en-
gineering and development efforts.

In the last decade, since the publication of [2], which
used SimGrid v3.10 (which we call v3 for simplicity), nu-
merous efforts have focused on improving SimGrid’s ex-
tensibility and usability. The overall goal was to lower or
remove entry barriers for users to develop custom and/or
complex simulators, while retaining all of SimGrid’s ac-
curacy, scalability, and versatility advantages. To achieve
this goal, many features have been released over a 10-year
development cycle up to v3.36, culminating in the SimGrid
v4 release. While SimGrid has been the subject of several
previous publications, this work describes technical devel-
opments and report on measures of success that have never
been previously published. Specifically:

1. A description of the fundamental simulation abstrac-
tions in SimGrid v4 (Section 3);

2. A description of mechanisms for customizing or re-
placing simulation models underlying these abstrac-
tions (Section 4);

3. A description of how these abstractions can be com-
bined into higher-level abstractions (Section 5);

4. A demonstration of how a single simulator can em-
ploy several programming models (Section 5);

5. A survey of how the above has enabled a wide range
of use cases (Section 6); and

6. A quantitative comparison of simulation scalability of
SimGrid v3 and SimGrid v4 (Section 7).

2 Related work

There is a large literature devoted to the simulation of PDC
platforms and applications with many proposed PDC sim-
ulation frameworks. Some of these frameworks have gar-
nered sizable user communities and are still actively main-
tained at the time of writing. They can be placed into two
broad categories based on the level of details of their un-
derlying simulation models, with different implications on
accuracy, scalability, and versatility.

Perhaps the most natural approach is to implement
simulation models at a high level of details, in an at-
tempt to reproduce near-exact real-world behaviors so as to
achieve high accuracy. Many simulation frameworks have
followed this approach for simulating network resources
(packet-level simulators [18, 19]), compute resources (cycle-
accurate simulators [20, 21]), and I/O resources (block-
accurate simulators [22]). These frameworks are not ver-
satile from a PDC standpoint because they each focus on a
particular class of hardware components, and as such are
typically used by researchers who specialize in studying
these components. While it is conceivable to combine mul-
tiple such frameworks to create a versatile PDC simulation
framework, doing so is typically impractical due to scala-
bility limitations as simulation time is typically orders of
magnitude longer than simulated time. Some PDC simu-
lation frameworks have been developed that simulate net-

2

work communications at the packet level for high accuracy,
with typically a severe loss in scalability, but simulate other
components at lower levels of details [23, 24].

One solution to address the scalability issue posed
by simulation models that implement a high level of
detail is to employ Parallel Discrete Event Simulation
(PDES) [25]. This approach has been used successfully
by PDC simulation frameworks developed for simulat-
ing high-performance computing (HPC) applications and
platforms [26, 27, 28, 29, 30]. The use of PDES allows
these frameworks to scale up the platform on which the
simulation is executed, possibly requiring a platform of
the same scale as that of the platform being simulated.
By contrast, many other PDC simulation frameworks, as
discussed hereafter, aim to achieve simulation scalability
when executing the simulation on a single compute node
(or even a single core).

An alternate approach for achieving scalable simula-
tions, without scaling up compute resources, is to imple-
ment simulation models at a relatively low level of detail.
That is, rather than simulating "microscopic" behaviors of
the target system, these models instead rely on mathemat-
ical models that aim to capture "macroscopic" behaviors.
For instance, rather than simulating the lifecycle of indi-
vidual network packets, they compute instantaneous data
transfer rates based on network path bandwidths and la-
tencies and on current network usage. The main challenge
is to come up with such coarse-grain simulation models
that are reasonably accurate in spite of this low level of de-
tail [4].

Several PDC frameworks have been developed using
the above approach. The most notable two such frame-
works are SimGrid and GridSim [31], both of which have
garnered large user communities, but using different ap-
proaches for and achieving different levels of versatil-
ity, accuracy, scalability, usability, and extensibility. Sim-
Grid aims to be directly versatile across a large range of
PDC domains (see Figure 1). Instead, versatility has been
achieved in GridSim by implementing domain-specific
frameworks on top of it such as CloudSim [32] (which
was later re-implemented standalone reusing a subset of
the GridSim simulation abstractions) for cloud simulations,
iFogSim [33] for IoT simulations, DISSECT-CF [34] for
IoT and cloud simulations, GroudSim [35] for grid and
cloud simulations, or OpenDC [36] and DCSim [37] for
data center simulations. The main focus of SimGrid up to
v3 was the development of accurate and scalable simula-
tion models via extensive validation and invalidation stud-
ies [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

GridSim and the frameworks built on top of it have
provided high usability (due to providing higher-level
simulation abstractions) and high extensibility (as seen
in the number of works that have successfully extended
CloudSim, e.g., [38, 39, 40, 41]). By contrast, SimGrid v3 has
had usability and extensibility shortcomings, as already
discussed in Section 1. This paper focuses on the techni-

cal developments that have addressed these shortcomings,
while preserving simulation accuracy and scalability.

3 Fundamental simulation abstrac-
tions

SimGrid v4 provides convenient APIs, and efficient imple-
mentations thereof, for three fundamental simulation ab-
stractions that are sufficient to describe and simulate vir-
tually any PDC scenario: resource, activity, and actor. Sim-
Grid v3 provided abstractions similar in intent, but suffered
from a lack of separation of concern between the models
that determine the behaviors of resources, the activities that
consume these resources and the actors that launch these
activities. The refactoring and re-implementation of Sim-
Grid in C++ in the last 10 years, was the occasion to enforce
a strong separation between the user and kernel spaces:
each abstraction exposed to the user has its counterpart in
the simulation kernel. This design has been instrumental
for improving both extensibility and usability: the funda-
mental abstractions can be customized and/or replaced in
various ways (see Section 4) and they can serve as the basis
for higher-level abstractions (see Section 5).

3.1 Resources

The first step in most SimGrid simulations is to describe a
hardware platform to simulate. This platform is composed
of three types of basic hardware resources based on the fol-
lowing three abstractions: (i) CPUs, defined by a number
of cores and a core compute speed; (ii) Network links, de-
fined by a latency and a bandwidth; and (iii) Disks, defined
by read and write bandwidths.

These basic resources are then aggregated and struc-
tured in higher-level abstractions to describe a hardware
platform either programmatically in the simulator’s code
or in an external XML file. A physical host comprises a
CPU, any number of disks, and a network endpoint. Sim-
Grid provides also a virtual machine abstraction, which is a
non-physical host that can be instantiated on and moved
between physical hosts. A route is a vector of network links
that defines a possibly multi-hop network path between
two network endpoints (e.g., between two hosts). A route
is either defined by the user or computed using some al-
gorithm, and the set of routes defines the physical network
topology. A network zone represents a set of hosts and links,
has a network endpoint, and knows how to determine the
routes, if they exist, between two hosts in the set and be-
tween a host and the zone’s endpoint. For instance, a net-
work zone can be defined to represent a compute cluster in
which all nodes can communicate with each other and com-
municate with the outside world via a shared endpoint. Fi-
nally, a platform is a hierarchy of network zones. Determin-
ing the route between two hosts in differing network zones
is done recursively [42].

3

3.2 Activities

3.2.1 Activity abstraction

Given a hardware platform description, the goal of any
simulator is to simulate the execution of activities on the
platform’s hardware resources: computations on CPUs,
communications on network links, and I/O operations on
disks. SimGrid thus provides an activity abstraction, and
its API allows the user to write the code to create and man-
age the execution of activities. All activities, regardless of
on which resources they are meant to run, follow the same
lifecycle depicted in Figure 2.

Figure 2: SimGrid activity lifecycle.

Once created (Init state), configuration parameters or
properties of an activity can be set using setters, includ-
ing setting dependencies on other activities. The activ-
ity is then started, at which point it may run immediately
(Running state) or be held back (Vetoed state). The activity
may be in the Vetoed state because it depends on the com-
pletion of other ongoing activities or because the resource
on which the activity must execute is not yet available or
identified. While running, an activity may be paused (Sus-
pended state) and resumed any number of times. When an
activity terminates it can end up in four different states de-
pending on whether it terminates successfully (Done state),
is canceled by the user code (Cancel state), terminates un-
successfully due to a simulated resource failure or shut-
down (Fail state), or reaches a user-specified timeout (Time-
out state).

3.2.2 Activity simulation

At the core of SimGrid are simulation models that deter-
mine the completion date, in simulated time, of each activ-
ity. Each activity is defined by a total amount of work to
do (e.g., bytes to read, compute operations to perform), an
amount of work that remains to be done, and a set of re-
sources that are used to perform this work. The objective is
to compute the activity’s completion date based on a notion
of latency, in seconds, and of a maximum rate of progress,
or speed, in units of work per time unit, both of which are
computed based on the hardware specifications of these re-
sources. The latency is computed as function (e.g., the sum)
of the latencies of the resources. The speed is based on a
determination of the bottleneck resource and on the speci-
fications of that resource.

372
435

245
245

530
530

50
664

+ +

+

... ⩽CA

⩽CB

⩽CE

⩽CC

⩽CD

...

...

...

Activities

Constraints

work

remaining

variable

(for Host A)

(for Link B)
(for Link C)
(for Link D)
(for Link E)

Actors

User
interface

Simulation
kernel

Linear MaxMin solver

ϱaA1 1

ϱ1

ϱaB2 2

ϱaC2 2 ϱaC3 3

ϱaE3 3

ϱaD2 2

ϱaAn n

ϱ2 ϱ3 ϱn

1 2 3 n

Simulation
Host BHost A

Host C

Li
n
k

C

Lin
k D

Link B

Link E

Host D

exec 1

exec n

comm 3

comm 2

Figure 3: Overview of a SimGrid simulation.

At some point during the simulation multiple concur-
rent activities can contend for some resources. In this case,
resource shares must be computed and allocated to each of
these activities. SimGrid computes these resource shares
using a linear max-min (LMM) solver, which is invoked
at each simulation step. It solves a constrained optimiza-
tion problem to compute the speed of each activity. The de-
fault objective function is to maximize the minimum speed
across all activities. The constraints impose that linear com-
binations of one or more activity speeds are bounded by
constants. These constants depend on the hardware char-
acteristics of the resources and on user-imposed constraints
on the rate of progress of activities. The coefficients in the
linear combinations are used to model various effects (see
Section 4.3). Once the speed of each activity has been com-
puted, the time until the first activity termination is com-
puted, the simulation clock is advanced accordingly, and
the amounts of remaining work for all activities are up-
dated based on their speed and time elapsed. Completed
Activities are then removed from consideration for the next
invocation of the solver.

Figure 3 depicts a 4-host platform with a 5-link "dog-
bone" network topology (right-hand side). 4 concurrent ac-
tivities are simulated, each shown in a different color: two
computation activities on Host A, a communication activ-
ity that uses links B, C, and D, and another communica-
tion that uses links C and E. The two computations con-
tend for Host A’s compute capacity, and the two communi-
cations contend for Link C’s bandwidth. All these activities
are defined in the simulation kernel by total and remaining
amounts of work. Each activity is also associated to a vari-
able ϱ, which is the activity’s speed and whose value needs
to be determined by the LMM solver (left-hand side). The
constraints of the optimization problem are shown in the
lower-left part of the figure. There is one constraint for each
resource used by ongoing activities, where the right-hand
side is the resource’s capacity and the left-hand side is a lin-
ear combination of the activity speeds, each scaled by some
factor (denoted as ax,y where x is the resource and y is the
activity). For instance, the speed of the two communication
activities (ϱ2 and ϱ3) both appear in the constraint for Link
C since both activities use some of that link’s bandwidth.

4

T1

A B C D E

Maestro

 Actor 2

Actor 3

Actor 1

T2T1 T1 T1

(a) Simulation execution timeline in sim-
ulated time.

Actor 2 Actor 3 Actor 3Actor 1 Actor1Actor 2Maestro Maestro Maestro

simcall return

A

simcall handling
user code model solving /

time advancesimcall invocation

B C D E

T1 T2T1 T1 T1

(b) Simulation execution timeline in wallclock time.

Figure 4: Example simulation execution timeline for three actors between simulated times T1 and T2. (a) Simulated
time – Initially, the maestro is involved in running the LMM solver to update all activities’ remaining amounts of work.
These activities correspond to simcall invocations by the three actors, which, in this example, all complete at the same
simulated time (T1). At this point, a scheduling round begins and each actor executes its code until the next simcall is
placed (shown as blue line segments). Once all actors are blocks on a simcall, the maestro regains control and handles all
these simcalls (B). In this example, the simcalls placed by Actor 2 and Actor 3 take zero simulated time. A new scheduling
rounds begins and the code of these two actors is resumed (C) until they place a new simcall and become blocked again
(D). Since all actors are blocked on simcalls, the maestro regains control, processes these two new simcalls, which, in
this example, take non-zero simulated time. The LMM solver is invoked to update all activities’ remaining amounts of
work, thus advancing the simulated time until the first simcall completion (T2). This occurs for Actor 1, whose code is
resumed (E). This process continues until all actors have completed, or until no actor can make further progress (which
denotes a deadlock bug in the simulator). (b) Wallclock time – The flow of control in the simulation’s actual execution
alternates between the maestro and the actors. Importantly, the code of two actors (in between the simcalls they place)
never executes concurrently.

See [2] for all details regarding SimGrid’s simulation mod-
els, and [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] for their
experimental validations.

3.3 Actors

3.3.1 Actor abstraction

It is possible to write a SimGrid simulator that merely cre-
ates activities (typically with dependencies), assigns them
to resources, and then launches the simulation, which ends
when all activities have completed. Most users, however,
wish to simulate complex systems with dynamic runtime
behaviors using a more general Communicating Sequen-
tial Processes (CSP) model. To do so, a SimGrid simulator
can create one or more actors. An actor is a (simulated) se-
quential process, defined by a main procedure written by
the user. This procedure can create activities and manage
their lifecycle.An actor can start an activity in three modes:
(i) Blocking – the start call is blocking, and the correspond-
ing actor can only proceed when the activity terminates;
(ii) Asynchronous – the start call returns immediately with
a handle for the activity, which provides an API to check
for and to wait on the activity’s termination; (iii) Detached
– the start call returns immediately without a handle in a
"fire and forget" fashion. A simulation typically comprises
many actors, each of which is responsible for one or more
activities.

Conceptually actors execute on hosts independently,
just like processes would in a real-world platform. Ac-
tors can synchronize with each other using classical syn-
chronization abstractions (i.e., mutex, condition variable,
semaphore, barrier). These abstractions are implemented
internally as zero-time activities. There is another synchro-

nization abstraction called a mailbox. A mailbox is a logi-
cal rendez-vous point through which actors can exchange
messages, similar to a URL on which one could post and
retrieve data. Mailboxes are only used to match the put and
get requests of actors. Each such matching results in a com-
munication activity, either within a host when the commu-
nicating actors run on the same host, or over an end-to-end
network path when the communicating actors run on dif-
ferent hosts.

3.3.2 Actor simulation

For the sake of deterministic execution, the actors cannot
modify their environment directly: each modification of
the activities or other interaction with the simulation ker-
nel is serialized through a central component that processes
them in a deterministic order. For the sake of modular-
ity and correctness, SimGrid is designed as an operating
system: the actors issue simcalls (akin to system calls) to
a simulation kernel (akin to an OS kernel) called the mae-
stro. The maestro decides which actors can proceed and
which ones must wait. Simcalls can be either immediate if
they take no time in the simulation (e.g., spawning another
actor), or blocking if their completion must wait for future
events (e.g., mutex locks require the mutex to be unlocked
by its owner; communications wait for the network to have
provided enough communication bandwidth for the data
transfer to have completed).

A SimGrid simulation proceeds as a sequence of
scheduling rounds. At each round, code in all actors that
are not currently blocked on a simcall gets executed. This
is done by the maestro, which passes the control flow to the
code of each actor in sequence. The control flow is returned

5

to the maestro when the actor blocks on its next simcall.
Once all actors have executed up until the point where they
have placed a simcall, all simcalls are handled by the mae-
stro. If some simcalls are immediate, another scheduling
round starts immediately for those actors that are ready to
execute. Once all actors have placed a blocking simcall, the
maestro invokes the LMM solver, which computes the time
at which the first pending simcall terminates. The simula-
tion time is then advanced to that point, one or more actors
are unblocked, and a new scheduling round begins. Fig-
ure 4a depicts scheduling rounds for an example with three
actors. From the simulation’s perspective the code written
in between each simcall by the user for each actor takes zero
time; only simcalls can take time. If the user wishes to sim-
ulate the time taken to execute this code, then a compute
activity must be created and started (via a simcall).

By default, the maestro and the actors execute sequen-
tially on a single core of the processor that runs the sim-
ulator (a multi-core execution mode is also available [43]).
Figure 4b shows the same example as that shown in Fig-
ure 4a, but with the timeline drawn according to wallclock
time instead of simulated time. The execution flow alter-
nates between the maestro and the actors, and the code of
two actors (in between the simcalls they place) never ex-
ecutes concurrently. As a result, although actors are im-
plemented as threads of control within the same address
space, they can share memory without any risk of race con-
dition. This greatly simplifies the design and implementa-
tion of a SimGrid simulator: although the simulator con-
ceptually implements a distributed system, this implemen-
tation can safely use globally visible data structures for ac-
tors to share information in zero simulated time. For in-
stance, consider a simulator of a distributed storage system
in which there is a central directory of file locations, but the
overhead of accessing/updating this directory is deemed
negligible by the user. In this case, instead of implementing
the in-simulation management of this directory (i.e, imple-
menting the directory as an actor with which other actors
must communicate via messages), the directory can simply
be implemented as, say, a dictionary data structure.

3.3.3 Model checking ability

As stated in the previous section, the design by which all
interactions of the actors with their environment are prop-
erly mediated via simcalls and the maestro ensures that the
simulated execution is deterministic. As a result, simulated
execution events are observable and the causality between
these events is well-defined. This makes it possible to re-
place the classical performance-oriented simulation engine
with another engine that only models the causal ordering of
observed events for the purpose of software model check-
ing (SMC) [44]. The goal is to efficiently explore all possible
outcomes of the simulated application’s execution so as to
assess the correctness of the application’s implementation
(i.e., discover possible deadlocks, livelocks, message mis-
matches, and other logical bugs). SimGrid v4 now comes

with a model checker that performs SMC and uses for-
mal techniques to reduce the explored search space by ex-
ploiting symmetries and prune causally equivalent histo-
ries. This model checker can be used to verify MPI ap-
plications [45] and pthread applications [46]. More gener-
ally, the correctness of any application whose execution is
simulated using SimGrid can be evaluated in this manner
(which, incidentally, also helped ironing out bugs in Sim-
Grid itself).

4 Extension mechanisms

A key concern for a simulation framework is its extensi-
bility. This is because users often want to model (part of
their) target systems in specific ways that do not corre-
spond to the common case. In SimGrid v3 users had to
understand and modify internals to extend simulation ab-
stractions and/or models. We have since added various
mechanisms so that the simulation framework can be ex-
tended conveniently.

4.1 Rich and unified resources

In SimGrid v3, to answer the needs of many users, it
was possible to model Dynamic Voltage Frequency Scal-
ing (DVFS) for CPU resources, by which each CPU resource
naturally implements a notion of pstate, where a given state
is defined by a numeric id and a compute speed, and can be
associated to a wattage. It was also possible to model back-
ground load on CPU resources by attaching a load profile to
a host that specifies dynamic changes in the nominal speed
according to a trace file or to a random generator. Finally, it
was also possible to attach to a host a state profile to specify
whether the host is up or down, which makes it possible to
simulate arbitrary host failures and churn patterns.

The above features were clearly useful but limited to
CPUs and hosts. Since SimGrid v3.11 they have been ex-
tended to the other resources (network links and disks),
thus unifying resource abstractions. As a result, users
can now modify the behavior of any resource by using
the pstate, load profile, and state profile features in cre-
ative ways to simulate a range of complex phenomena, the
simulation of which would have been labor-intensive (i.e.,
requiring modifying internals) with SimGrid v3. For in-
stance, the startup period of any resource can now be mod-
eled easily with an extra pstate in which the resource per-
forms no work for activities on that resource. An actor can
be in charge of changing the resource’s pstate after a given
lapse of time that corresponds to the duration of the startup
period. Another example is the simulation of Wi-Fi net-
works (introduced in SimGrid v3.26), where the bandwidth
experienced by a station is a function of the signal-to-noise
ratio between the station and the access point. It turns out
that this phenomenon can be simulated by assigning par-
ticular pstate values to network links. Section 5.2 describes

6

how this technique, combined with other extension mech-
anisms, makes it possible to model the behavior of Wi-Fi
networks.

4.2 Plugins

In SimGrid v4 we have developed a generic plugin feature,
by which arbitrary callbacks can be attached to signals that
are fired by specific simulation events (e.g., activity starts
and completions, actor creations and terminations). Plug-
ins can be configured through arbitrary properties attached
to any resource when the simulated platform is instanti-
ated. They can also extend any simulation abstraction with
any arbitrary objects. These objects can be used to store
persistent state for the callbacks to use throughout the sim-
ulation.

Plugins have allowed us to not only simplify SimGrid’s
internal implementation but also to make SimGrid more ex-
tensible. For instance, SimGrid v3 provided a model of the
energy consumption of CPU resources. The implementa-
tion of this model was spread throughout SimGrid’s core,
so as to pass relevant parameters to the energy model and
invoke it to update the energy consumption values at the
correct simulated times. This implementation was difficult
to maintain. Furthermore, a user wanting to modify (let
alone extend or replace) the energy model had to become
essentially a full-fledged SimGrid developer. The energy
model was re-implemented as a self-contained plugin with
its own configuration (which specifies the consumption of
each pstate in Watts) and callbacks for the relevant events
related to CPU resources and their use by activities. The
implementation of the plugin is confined to a single source
file which contains only 350 lines of C++ code, that is easy
for users to copy and modify.

The SimGrid distribution now comes with several built-
in plugins (e.g., network link load and energy modeling
(v3.18), WiFi network load and energy modeling (v3.26),
host energy modeling (v3.11), host load modeling (v3.22),
file system (v3.18), batteries and solar panels (v3.34), com-
puter room air handling (v3.35)). Users can also easily de-
velop their own plugins from scratch. For instance, often
users wish to collect and output information regarding spe-
cific events that happen throughout the simulated execu-
tion, typically for post-mortem analysis. Say that the user
wishes to output to the terminal a time-stamped trace of
actor termination events. They can develop such a tracing
plugin in only a few lines of C++, as shown in Figure 5.

4.3 Advanced modeling mechanisms

As explained in Section 3.2, SimGrid’s simulation core is
implemented as a constrained optimization problem solver,
the LMM solver. Using the SimGrid v4 API, there are three
ways for users to modify the LMM so as to extend Sim-
Grid’s simulation models, as described hereafter.

First, it is possible to simulate changes of the speed at
which resources perform activities, given the current set

1 SIMGRID_REGISTER_PLUGIN(tracer, "Tracer", &tracer_init)
2

3 / / Callback to place whenever an a c t o r terminates
4 static void trace_exit(simgrid::s4u::Actor& actor) {
5 std::cout << simgrid::s4u::Engine::get_clock() << ",";
6 std::cout << actor->get_name() << std::endl;
7 }
8 / / Plugin i n i t i a l i z a t i o n function
9 void tracer_init() {

10 / / Attaching the cal lback to the relevant event
11 simgrid::s4u::Actor::on_exit(&trace_exit);
12 }

Figure 5: A simple "tracing" plugin.

of simulated activities, by defining ad hoc correction fac-
tors applied to the resources’ latencies and speeds. Such
factors were already present in SimGrid v3, for the spe-
cific purpose of simulating various network protocol effects
(e.g., for modeling TCP overhead [4] or adaptive protocols
used by MPI implementations [3]). But these factors were
global, static, only for network links and communication
activities, and were all hard-coded in the LMM. In Sim-
Grid v4 we have extended these correction factors to all re-
source kinds. A callback function can be attached to each
resource, at creation time or later. This function takes the
size of an activity as parameter and applies user-specified
correction factors. This allows users to extend SimGrid’s
simulation core to, for instance, simulate CPU affinities to
study classical unrelated-machines scheduling problems,
account for protocol change depending on resources (e.g.,
Infiniband RDMA between distinct nodes, memory copy
for intra-node communications, cudaMemcpy when GPUs
are involved) or simulate the heteroscedastic performance
of mechanical disks.

Second, it is now possible to modify the LMM to sim-
ulate the fact that the performance delivered by a resource
can degrade with contention. In other words, although by
default the LMM simulates a linear sharing of a resource
among contending activities, the user can specify arbitrary,
including non-linear, sharing policies. Specifically, a user
can attach an arbitrary function to a resource, which com-
putes the current resource’s speed as a function of the num-
ber of concurrent activities using that resource. This func-
tion could implement any analytical model, or could re-
produce specific discrete behaviors observed on particular
real-world resources. This function is invoked by the LMM
each time new resource shares must be computed for that
resource.

Combining these two methods, introduced in SimGrid
v3.29, correction factors and non-linear sharing behaviors,
makes it possible to simulate resource behaviors that go be-
yond what the default LMM can do. For instance, it has al-
lowed us to faithfully simulate the execution of I/O bench-
marks on several types of mechanical and solid-state disk
drives [7].

Third, users can specify arbitrary concurrency limits for
any resource. When the number of activities that try to use
this resource exceeds that limit, the extraneous activities are
delayed and have to wait for currently running activities to

7

complete. Specifying different concurrency limits makes it
possible to extend the use of SimGrid to many scenarios,
such as, the simulation of network throttling on a multipro-
cessor system-on-chip, or to study scheduling algorithms
under classical theoretical constraints (e.g., 1-port network
model, strictly serial executions on a CPU).

The above mechanisms allow users to vastly modify
and extend the default behavior of the LMM so as to sim-
ulate a wide range of real-world phenomena. But Sim-
Grid also offers the capability to bypass the LMM alto-
gether. For instance, SimGrid can be compiled to use the
well-known ns-3 packet-level network simulator [18] as a
network model. Packet-level simulation accounts for the
movement of every network packet involved in every com-
munication. This higher level of detail, compared to the
LMM-based models that only recompute the respective in-
stantaneous speeds of the currently ongoing communica-
tions when a communication starts or stops, expectedly
comes with a much higher simulation time.

Finally, users can extend SimGrid with arbitrary models
by overriding two methods: next_occurring_event(),
which returns the date of the next event that will oc-
cur according to the model, and update_state(delta),
which updates the model’s state by shifting the date for-
ward by delta seconds. SimGrid v4 uses this plugin
mechanism to simulate the behavior of resources that are
not handled by SimGrid’s extant models, e.g., batteries or
solar panels that provide power to hosts. The battery plu-
gin can thus interrupt the simulation when a battery be-
comes depleted, which requires to turn off the hosts that
use that battery as their primary power source. An FMI
(Functional Mock-up Interface) plugin for SimGrid has also
been developed that makes it possible to run a SimGrid
simulation while co-simulating any FMI model [47], such
as ones built with OpenModelica. This plugin leverages the
above extension mechanism to enable such co-simulation,
interrupting the SimGrid simulation when an event occurs
in the FMI model, and allowing SimGrid actors to modify
the parameters of the FMI model during the simulation.

5 Better usability via composite ab-
stractions and programming models

Using the abstractions in Section 3 and the extension mech-
anisms in Section 4, we have implemented several high-
level, composite abstractions in SimGrid v4. We have also
made it possible to combine multiple programming models
within the same SimGrid simulator. The goal is to increase
usability by making simulator implementation easier for a
broad range of use cases.

5.1 Composite platforms

Although the abstractions described in Section 3.1 make
it possible to specify any conceivable hardware platform,

doing so for large platforms is time-consuming or labor-
intensive, and almost always error-prone. One of the most
common parallel computing platforms is a homogeneous
cluster in which hosts are interconnected via some network
topology. Describing a cluster using the XML format would
entail specifying: (1) each host individually with its own
name and speed; (2) a private link connecting a host to
a single backbone switch define by its latency and band-
width; (3) the backbone switch itself with its own latency
and bandwidth values; and (4) all the routes between each
pair of hosts. Figure 6 shows such an XML description of a
64-node homogeneous cluster.

1 <platform version="4.1">
2 <zone id="cluster" routing="Full">
3 <!−− Declare the 64 hosts −−>
4 <host id="node-0.cluster" speed="1Gf"/>
5 <host id="node-1.cluster" speed="1Gf"/>
6 [...]
7 <host id="node-63.cluster" speed="1Gf"/>
8

9 <!−− Declare the 64 pr ivate l inks −−>
10 <link id="link_0" bandwidth="10Gbps" latency="10us"/>
11 <link id="link_1" bandwidth="10Gbps" latency="10us"/>
12 [...]
13 <link id="link_63" bandwidth="10Gbps" latency="10us"/>
14

15 <!−− Declare the backbone switch −−>
16 <link id="backbone" bandwidth="100Gbps" latency="100us">
17

18 <!−− Declare the (64 x 63) / 2 routes −−>
19 <route src="node-0.cluster" dst="node-1.cluster">
20 <link_ctn id="link_0"/>
21 <link_ctn id="backbone"/>
22 <link_ctn id="link_1"/>
23 </route>
24 [...]
25 <route src="node-62.cluster" dst="node-63.cluster">
26 <link_ctn id="link_62"/>
27 <link_ctn id="backbone"/>
28 <link_ctn id="link_63"/>
29 </route>
30 </zone>
31 </platform>

Figure 6: A partial verbose XML description of a homoge-
neous cluster.

Unsurprisingly, many SimGrid users target such clus-
ter platforms (see Figure 1). To increase usability for these
users SimGrid’s XML format was extended (even before
SimGrid v3) with built-in netzone definitions that can be
re-used, customized, and combined at will.

Figure 7 describes the same platform as in Figure 6 but
using the built-in <cluster> tag that drastically simpli-
fies the code users have to write. The underlying network
topology and routing of the clusters are computed auto-
matically [42], in a way that is more efficient than when

1 <platform version="4.1">
2 <!−− Declare a 64−node c l u s t e r −−>
3 <cluster id="cluster" prefix="node-" radical="0-63"

suffix=".cluster" speed="1Gf" bw="10Gbps"
lat="10us" bb_bw="100Gbps" bb_lat="100us"/>

4 </platform>

Figure 7: A compact XML description of a homogeneous
cluster.

8

done as in Figure 6. Additional built-in descriptions of
complex network topologies commonly found in HPC clus-
ters, such as multi-dimensional torus, Fat-Tree, or Dragon-
fly topologies are made available to the users.

Describing platforms in XML is convenient as users can
produce human- and machine-readable descriptions rela-
tively easily. Unfortunately, it has proven difficult to evolve
SimGrid’s XML format to include new capabilities while
maintaining backward compatibility. To illustrate these
limitations let us consider the Summit leadership-class su-
percomputer from Oak Ridge National Laboratory. Sim-
Grid’s XML format makes it possible to declare a cluster
with the desired number of nodes (i.e., approximately 4,600
compute nodes) and the desired topology (i.e., 3-level Fat-
Tree network topology with 18 director switches) using the
appropriate properties in the <cluster> tag. However,
this tag only supports compute nodes defined as simple
multicore processors. As a result, while the <cluster>
tag is convenient for some users, it is too limiting for oth-
ers who then have to revert to an overly complex XML
platform description. For this reason we have introduced,
in SimGrid v3.28, the capability to describe platforms pro-
grammatically directly in the code of the simulator. This
provides users with a much greater flexibility than with
XML, allowing them to combine the fundamental abstrac-
tions (CPU, network link, disk) in arbitrary fashion. For
instance, in the Summit use case, it is straightforward to im-
plement a programmatic description of each compute node
as comprising 2 CPUs, 6 GPUs, 2 NICs, and 1 NVMe, all in-
terconnected via a custom internal network topology. Note
that although SimGrid does not provide a built-in GPU
model, custom GPU models can be easily built by combin-
ing SimGrid’s fundamental abstractions [48].

Figure 8 shows a programmatic C++ description of a
more complex platform with two independent hosts, rep-
resenting a coordinator and a database service, each con-
nected to three homogeneous clusters of different sizes.
While this way of describing platforms may seem more
complicated at first, it is much easier to evolve than its
XML counterpart. For instance, adding three more clusters
to that platform to simulate a larger scale scenario would
simply amount to adding three more sizes in the vector
(line 42), but would require adding three more <cluster>
tags and declare all the additional routes in the XML de-
scription, which is error-prone. Moreover, increasing the
complexity of the internal structure of the cluster can be
done programmatically, while it is highly constrained by
the XML format, as explained earlier.

5.2 Composite network routes

By default, network topologies specified in simulated plat-
forms assume classical TCP-based end-to-end network
routes. But expressing composite routes where different
behaviors are simulated for different portions of the routes
can be compelling. This is the case of the simulation of Wi-

1 NetZone* create_cluster(NetZone* root, std::string suffix,
int num_hosts) {

2 auto* cluster =
create_star_zone("cluster"+suffix)->set_parent(root);

3

4 / / c r e a t e gateway
5 cluster->set_gateway(cluster->create_router("cluster" +

suffix + "-router"));
6

7 / / c r e a t e the backbone link
8 auto* backbone = cluster->create_link("backbone" + suffix,

"100Gbps")->set_latency("100us");
9

10 / / c r e a t e a l l hosts and connect them to outside world
11 for (int i = 0; i < num_hosts; i++) {
12 std::string name = "node-"+std::to_string(i)+suffix;
13 / / c r e a t e host
14 auto* host = cluster->create_host(name, "1Gf");
15 / / c r e a t e link
16 auto* link = cluster->create_link(name+"_link","10Gbps")

->set_latency("10us");
17 / / add route between host and any other host
18 cluster->add_route(host, nullptr, {link, backbone});
19 }
20 cluster->seal();
21 return cluster;
22 }
23

24 int main(int argc, char** argv) {
25 / / Create the platform
26 auto* root = create_full_zone("world");
27

28 / / Create a coordinator zone / host
29 auto coordinator_zone =

create_full_zone("Coordinator")->set_parent(root);
30 coordinator_zone->create_host("coordinator.org", "1Gf");
31 coordinator_zone->seal();
32

33 / / Create a database zone / host
34 auto database_zone =

create_full_zone("Database")->set_parent(root);
35 database_zone->create_host("database.org", "1Gf")

->create_disk("db", "100MBps", "50MBps");
36 database_zone->seal();
37

38 / / Create a single link as a simple a b s t r a c t i o n of the
whole wide−area network

39 auto* internet = root->create_link("internet","200MBps")
->set_latency("1ms");

40

41 / / Create three c l u s t e r s and connect them to the
coordinator and database

42 std::vector<int> cluster_sizes = {16, 32, 40};
43 int i = 0;
44 for (auto size : cluster_sizes) {
45 auto* cluster =

create_cluster(root,".cluster"+std::to_string(i++)+
".org", size);

46 root->add_route(coordinator_zone, cluster, {internet});
47 root->add_route(database_zone, cluster, {internet});
48 }
49 root->seal();
50 }

Figure 8: Programmatic C++ description a platform com-
posed of two individual hosts and three homogeneous
clusters of different sizes.

9

Fi networks, for instance, needed to study IoT platforms.
This requires a new type of network zone that comprises
the access points of the Wi-Fi network, the hosts (stations in
the Wi-Fi terminology) connected to it, and a single net-
work link declared with a specific bandwidth sharing pol-
icy adapted to Wi-Fi networks. This pseudo-link is then
included into the network routes between any two stations
within the Wi-Fi zone.

One fundamental difference between Wi-Fi and wired
networks is that the performance of the former is not de-
termined by the bandwidths and latencies of network links
but by two characteristics of the access point, defined as
properties of the zone. First, the Modulation and Cod-
ing Scheme (MCS) defines the speed at which the access
point exchanges data with all the stations. This speed di-
rectly depends on the access point’s model and configura-
tion, and also on the distance between the involved station
and access point. More precisely, the data rate depends
on the signal-noise ratio (SNR) between the communicat-
ing entities. Second, the number of antennas defines the
amount of Spatial Streams that the access point can simulta-
neously serve. In practice, a given access point will provide
several levels of performance (called Data Rates) depend-
ing on its hardware characteristics. In SimGrid, the Wi-Fi
pseudo-link is given a set of pstates representing each of
these data rates (see Section 4.1). Each host connected to
this access point may have a different pstate on that link,
representing the MCS that would be used between the sta-
tion and the access point corresponding to the SNR be-
tween these elements. Additionally, the LMM is extended
to model non-linear resource sharing (see Section 4.3) so
that the maximum throughput of a Wi-Fi network is not a
constant but rather a function of the number of concurrent
flows [49]. Implementing a fast but accurate model of Wi-Fi
performance would have been much more difficult without
these extension mechanisms provided since v3.26 (pstates
for any resource, user-provided resource sharing function).

5.3 Composite activities

When writing a simulator for complex application execu-
tion scenarios, actors often need to start multiple activities
of different types asynchronously and manage their con-
current execution. For instance, when writing a simulator
of an iterative numerical simulation based on domain de-
composition, each actor may have to exchange data with its
neighbors, write intermediate results to the file system, and
perform computations, all concurrently. To ease the man-
agement of concurrent asynchronous activities, SimGrid
v3.35 introduced an ActivitySet data container, in which
asynchronous activities of any types can be stored. This
container allows users to simply test or wait for the com-
pletion of any or all the activities.

As seen in Figure 2, activities have a well-defined life-
cycle that corresponds to the unique execution of a certain
amount of work. However, in some execution models, such

as Synchronous Data Flow (SDF) or Bulk Synchronous Par-
allel (BSP), the same activity, or activity sequence, must be
repeated several times.

To support such execution models, SimGrid v3.34 in-
troduced the concept of tasks. A task has an underlying
activity that can be repeated multiple times. Tasks can be
organized in graphs to simulate complex iterative execu-
tion patterns with inter-task control dependencies. Sim-
Grid v4 also introduced the notion of tokens that circulate
through a task graph and can carry any user-defined data
to implement inter-task data dependencies. When all de-
pendencies of a task become satisfied it fires a new instance
of its underlying communication, computation, or I/O ac-
tivity. It then blocks until all its dependencies become satis-
fied again. The parameters and successors of a task can be
redefined at runtime using the same callback/signal mech-
anism as that used for plugins. This allows users to dy-
namically change the topology of the task graph, imple-
ment conditional branches, or introduce variability in the
duration of the simulated activities.

The task and token abstractions can be used to simulate
relatively simple, yet commonplace, designs which involve
pipelined activities. As an example, Figure 9 illustrates the
usage of tasks and tokens to implement an iterative "com-
putation and data exchange" pattern between two hosts,
which is automatically repeated N times. That is, at each
iteration, each host performs a computation task and then
a communication task to simulate the exchange of data over
the network. This example also includes the simulation of
a periodic checkpoint that must occur every n ≪ N iter-
ations. This is easily simulated via a token sent every n
iterations, which triggers the execution of an I/O task.

Figure 9: A simple BSP execution implemented with tasks
and tokens. Two hosts perform a computation and then ex-
change their data. This pattern is automatically repeated N
times. A conditional checkpoint is triggered by the emis-
sion of a token sent every n ≪ N iterations.

Although the above task and token abstractions are
powerful, they can become relatively costly in terms of
simulation time due to each operation being simulated as
an individual task. This would be the case, for instance,
for simulating the buffered transfer of data stored on disk
to a remote host, which involves fine-grain pipelining of
I/O operations and communications. For this reason, Sim-
Grid v4 provides simulation abstractions that implement
these types of concurrent operations using a continuous
fluid approximation. This approximation does not simu-
late the discrete execution of these operations, but instead
computes the bottleneck operation and makes all opera-
tions proceed at the speed of that bottleneck. The simula-

10

tion is thus implemented at a coarser grain, trading off sim-
ulation details for faster simulation execution. Specifically,
two such abstractions are provided: parallel task, or ptask,
and I/O stream (introduced in v3.31). A ptask encapsulates
computations and communications to be executed over a
set of interconnected hosts (e.g., an iterative matrix multi-
ply parallel computation). It is defined by volumes of com-
putation to be executed at each host and volumes of data to
transfer between each host pair. An I/O stream encapsu-
lates I/O operations and communications for sending data
between hosts and/or disks (e.g., a video stream applica-
tion with repeating I/O reads on a host, each followed by
network transfer to a remote host).

5.4 Composite programming models

The simulation abstractions presented in Section 3 allow
users to implement a simulator using the CSP program-
ming model, which is general and can be used to imple-
ment a simulator of virtually any distributed system. How-
ever, SimGrid also supports other, less general, program-
ming models that are specialized for common use cases,
so that simulators for these use cases can be implemented
with minimal effort.

As mentioned at the beginning of Section 3.3, it is possi-
ble to implement a SimGrid simulator without creating any
actor: the simulator simply creates activities and sets up de-
pendencies between these activities. Since SimGrid v3.30,
it is possible to describe a static Directed Acyclic Graph
(DAG) of activities. Each activity in this DAG can be a
computation, a network communication, an I/O operation,
or any of the composite activities described in Section 5.3.
As a result, it is possible to describe a static data-flow ap-
plication, and the simulator merely specifies on which re-
source(s) each activity is to be executed. It can then launch
the simulation until completion of all activities or until a
particular lapse of (simulated) time has elapsed. This pro-
gramming model is more restricted than the CSP model,
but proves useful and convenient for many users. Fig-
ure 1 shows that many SimGrid users develop simulators
for evaluating scheduling algorithms. Many of these sim-
ulators are used to study applications structured as static
DAGs, for which different schedules are computed and
must be evaluated in simulation. The above programming
model makes it straightforward to implement such simula-
tors.

A commonplace programming model for cluster plat-
forms (the most frequently targeted class of platform ac-
cording to Figure 1) is distributed-memory programming
using message-passing. In practice, this programming
model is implemented using the Message Passing Interface
(MPI) standard [50], which is not a fully general CSP pro-
gramming model but provides many convenient higher-
level abstractions such as collective communications. For
this reason, SimGrid provides an implementation of MPI,
called SMPI (Simulated MPI). It makes it possible for users

to write standard MPI programs, or use unmodified exist-
ing MPI programs, and execute them seamlessly in simula-
tion. SMPI uses several techniques to ensure that the simu-
lated executions can be executed on a single machine scal-
ably [15]. It also implements accurate simulation models
of both point-to-point and MPI collective communication
operations, accounting for the specific schemes and algo-
rithms implemented in particular implementations of the
MPI standard (which the user can select at will). These
models have been thoroughly validated, and we refer the
reader to [3, 9, 51] for experimental validation results and
all technical details.

A key usability enhancement in SimGrid v4 is that all
the above programming models can now be combined at
will within a single simulator: different components of a
simulator can use different programming models.

To illustrate this capability, we present a full-fledged ex-
ample. Consider a coordinator-worker application where
each worker executes on a node of a compute cluster. When
idle, each worker requests work from a coordinator that
is running on some remote host. This coordinator-worker
scheme can be implemented naturally using SimGrid’s CSP
programming model. Say that the work that each worker
must perform consists in invoking an MPI program that ex-
ecutes on all compute nodes of its cluster. At each iteration
of this MPI program the MPI ranks perform a computation
and then synchronize via an all-to-all communication. This
can be implemented easily, since v3.34, using SimGrid’s
MPI programming model. Say now that, as part of this
computation, at each iteration the MPI process with rank
0 must upload 1MB of data to a remote database. This con-
sists in sending 1MB to a remote host and then writing 1MB
to a disk at that host. This can be easily implemented as a 2-
activity sequence using SimGrid’s data-flow programming
model. While the general CSP programming model would
be conceptually sufficient to implement the entire simula-
tor, the ability to combine multiple programming models
vastly reduces the overall development effort.

We have produced a working implementation of the
above example using SimGrid’s C++ API in less than 150
lines of code (code available on GitHub [52]). We show
here relevant code fragments, all redacted for brevity. Most
of the code of the main() function (Figure 10) defines the
simulated hardware (as already shown in Figure 8). A few
lines of code are used to state that one Coordinator actor is
to be started on some host in the platform, and one Worker
actor is to be started on a compute node of each of 3 clusters
(lines 9-13).

Figure 11 shows the Coordinator code which first cre-
ates its mailbox (line 5), and then constructs a queue of
workunits for workers to perform (lines 7-9). Each worku-
nit is described by a number of iterations, an amount of
data to communicate, and an amount of work to compute.
The workunit queue ends with 3 "poison pills" through
which workers will discover that there is no more work
to be done. The coordinator then goes through a loop

11

1 int main(int argc, char **argv) {
2 / / Create a simulation engine
3 auto engine = new Engine(&argc, argv);
4 / / Create a simulated platform
5 std::vector<int> cluster_sizes = {16, 32, 40};
6 [...]
7 / / Create 1 coordinator
8 Actor::create("Coordinator",

Host::by_name("coordinator.org"), Coordinator());
9 / / Create 3 worker a c t o r s

10 Actor::create("Worker1",
Host::by_name("host-0.cluster1.org"), Worker());

11 Actor::create("Worker2",
Host::by_name("host-0.cluster2.org"), Worker());

12 Actor::create("Worker3",
Host::by_name("host-0.cluster3.org"), Worker());

13 / / Launch the simulation
14 engine->run();
15 }

Figure 10: main() code for the example in Section 5.4.

(lines 15-22) in which it waits for workers to send it a mail-
box to which it replies with the next workunit to be per-
formed (via a simulated 128-byte message), until all worku-
nits have been performed.

1 class Coordinator {
2 public:
3 void operator()() {
4 / / Create my mailbox
5 auto my_mailbox = Mailbox::by_name("coordinator_mb");
6 / / Create 10 workunits : i t e r =100 , s ize =10MB, work=2Gf
7 std::deque<WorkUnit*> todo;
8 for (int i = 0; i < 10; i++)
9 todo.push_front(new WorkUnit(100, 10*MB, 2*Gf));

10 / / Add " poison p i l l s " for worker terminations
11 for (int i = 0; i < num_workers; i++)
12 todo.push_front(new WorkUnit(0, 0, 0));
13

14 / / Main loop
15 while (not todo.empty()) {
16 / / Wait for a worker to send me t h e i r mailbox
17 auto worker_mailbox = my_mailbox->get<Mailbox>();
18 / / Reply with the next workunit (128 − byte message)
19 worker_mailbox->put(todo.back(), 128);
20 / / Remove workunit from queue
21 todo.pop_back();
22 }
23 }

Figure 11: Coordinator C++ functor for the example in Sec-
tion 5.4.

Figure 12 shows the Worker code. First, the worker
identifies the database’s host and disk (lines 4-6) and the
compute nodes in its cluster (line 8), after which it creates
its own mailbox (line 10) and loops (line 13). At each itera-
tion of the loop it requests work from the coordinator via a
32-byte message (line 15), receives a workunit (line 17), and
aborts if the workunit is a poison pill (line 19). If the worku-
nit is not a poison pill, then it asynchronously starts a sim-
ulated MPI program at line 22. The first argument to the
SMPI_app_instance_start() function is a name that
will be used to later wait for the completion of the MPI pro-
gram. The second argument is a lambda expression whose
code is standard MPI code (lines 23-53). The third argu-
ment is the list of compute nodes on which to execute the
MPI program (line 54).

1 class Worker {
2 public:
3 void operator()() {
4 / / Get database host and disk
5 auto dbhost = Host::by_name("database.org");
6 auto dbdisk = dbhost->get_disks().front();
7 / / Get l i s t of compute nodes in my c l u s t e r
8 auto nodes = this_actor::get_host()

->get_englobing_zone()->get_all_hosts();
9 / / Create my mailbox

10 auto mailbox = Mailbox::by_name(this_actor::get_name());
11

12 / / Main loop
13 while (true) {
14 / / Ask the coordinator for work (32 − byte message)
15 Mailbox::by_name("coordinator_mb")->put(mailbox, 32);
16 / / Get a workunit back
17 auto wu = my_mailbox->get<WorkUnit>();
18 / / I f i t ’ s a poison p i l l , terminate
19 if (wu->iterations == 0) break;
20

21 / / S t a r t and MPI program to perform the work
22 SMPI_app_instance_start(this_actor::get_cname(),

[wu, dbhost, dbdisk]() {
23 MPI_Init();
24 int numprocs, myrank;
25 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
26 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
27 / / Allocate a data buffer
28 void *data = SMPI_SHARED_MALLOC(wu->size * numprocs);
29 for (int it= 0; it< wu->iterations; it++) {
30 / / Perform BSP compute work
31 this_actor::execute(wu->work);
32 / / Perform BSP a l l −to − a l l communication
33 MPI_Alltoall(data, wu->size, MPI_CHAR, data,

wu->size, MPI_CHAR, MPI_COMM_WORLD);
34 / / Rank 0 performs a database update
35 if (myrank == 0) {
36 / / Create 1MB read a c t i v i t y on the database disk
37 auto io_activity =

dbdisk->io_init(1*MB, Io::OpType::READ);
38 / / Create 1MB communication a c t i v i t y
39 / / from my host to the database host
40 auto comm_activity =

Comm::sendto_init(this_actor::get_host(),
dbhost)

->set_payload_size(1*MB));
41 / / Create a c t i v i t y dependency
42 comm_activity->add_successor(io_activity);
43 / / S t a r t the I /O a c t i v i t y , but i t won ’ t s t a r t
44 / / u n t i l the communication a c t i v i t y completes
45 io_activity->start();
46 / / S t a r t the communication a c t i v i t y
47 / / and wait for i t s completion
48 comm_activity->start()->wait();
49 }
50 }
51 / / Free the data buffer
52 SMPI_SHARED_FREE(data);
53 MPI_Finalize();
54 }, nodes);
55

56 / / Wait for the MPI program to terminate
57 SMPI_app_instance_join(this_actor::get_cname());
58 }
59 }

Figure 12: Worker C++ functor for the example in Sec-
tion 5.4.

12

At line 29, the program allocates sufficient memory for
the buffer that will be used for all-to-all communication,
based on the workunit’s specification. While this could be
done using a standard malloc(), the simulation’s mem-
ory footprint would become too large when simulating the
program’s execution with many MPI processes. Instead,
the data is allocated using the SMPI_SHARED_MALLOC()
macro. This macro, as explained in details in [51], allocates
memory that is shared by all simulated MPI processes.
While using this macro would make a real MPI program
incorrect, for a program that does not perform any actual
computation but only simulates the execution of compu-
tation volumes, it makes it possible to simulate the execu-
tion of large-scale programs on a single computer. The MPI
program then loops in BSP fashion (lines 30-51). At each
iteration of the loop, each process performs some computa-
tion volume as specified by the workunit (line 32), followed
by an MPI all-to-all communication for a data volume also
specified by the workunit (line 34). The process with rank
0 performs extra work at each iteration (lines 36-50). It cre-
ates an I/O activity to be performed on the database disk
(line 38) and a communication activity to be performed be-
tween the host this process runs on and the database host
(line 41). Both these activities have a 1MB payload, and
the I/O activity depends on the communication activity
(line 43). The process starts both activities and waits for
the completion of the communication activity (lines 46 and
49). Finally, once all BSP iterations have been performed,
each simulated MPI process frees the data buffer and calls
MPI_Finalize() (lines 53-54).

6 Impact on simulation practice

In this section we demonstrate the impact of the enhanced
usability and extensibility of SimGrid v4 on simulation
practice. The simulation abstractions and programming
models that we have described in the previous sections
allow users to implement simulators for many different
use cases with reasonably low effort. This has led users
to develop simulators for several domains, as seen in Fig-
ure 1. Hereafter we describe notable projects for which
SimGrid provides a foundation and that form a large Sim-
Grid ecosystem. Some of these projects have produced sim-
ulators or simulation frameworks that aim at avoiding du-
plication of effort in research communities. Others have
produced simulators or simulation-based tools for various
production uses. All these projects are a testimony to Sim-
Grid’s versatility and have all benefited from its capabilities
in terms of accuracy and scalability. But, in all that follows,
we specifically explain how they have benefited from the
extensibility and usability enhancements described in Sec-
tions 4 and 5.

6.1 Distributed cyberinfrastructure simula-
tion

Many researchers wish to simulate the execution of various
application workloads on distributed platforms, and often
end up re-implementing the same simulation abstractions
and mechanisms. WRENCH [53] is a simulation frame-
work that provides implementations of highly configurable
services that users can re-use as building blocks in their
simulators. It also removes the burden of implementing
inter-process communication, which is labor-intensive and
error-prone when developing a simulator of a complex dis-
tributed system. The user only writes the code of one kind
of actors called execution controllers. These controllers in-
teract with the services deployed on the simulated platform
using simple APIs, so as to execute application workloads
defined by data and compute volumes with arbitrary de-
pendencies. As a result, it is possible to implement simu-
lators of complex deployments and runtime systems with
low software engineering effort. WRENCH achieves this
objective because SimGrid’s API is expressive enough to
describe a wide range of interoperable services and suffi-
ciently usable to render the implementation of these ser-
vices tractable. In particular, WRENCH relies on plug-
ins (Section 4.2), on the ability to mix different program-
ming models (Section 5.4), and on composite activities (Sec-
tion 5.3).

6.2 Resources and jobs management systems
simulation

An active research area is Resources and Jobs Management
Systems (RJMS), i.e., the systems in charge of the schedul-
ing of user jobs on shared parallel computing platforms.
In particular, RJMS must employ so-called batch schedul-
ing algorithms, which have been the subject of active re-
search for decades, and are typically evaluated in simu-
lation. The Batsim project [54] is a SimGrid-based RJMS
simulator. While most research in this area simulates batch
jobs at a completely abstract level (e.g., rectangles in a Gantt
chart), Batsim users can describe workloads in which each
job is defined by a profile that encodes specific computa-
tion, communication, and I/O patterns. Job executions are
then simulated so that they generate load, contention, and
electrical power consumption on hardware resources. The
ElastiSim project [55] shares Batsim’s objectives but specif-
ically targets the simulation of malleable batch jobs that
can both adapt their resource demands and report on their
progress at runtime. These two features dramatically in-
crease the design space for batch scheduling algorithms as
these algorithms can make decisions regarding a job dur-
ing that job’s execution. Batsim uses the pstate feature for
rich resource descriptions (Section 4.1), and both Batsim
and ElastiSim rely on SimGrid’s composite ptask activities
(Section 5.3).

13

6.3 HPC runtimes and applications

Many researchers have used simulation for research and
development in the field of HPC, a field in which SimGrid
has seen a lot of usage (as seen in the fraction of works that
target Cluster platforms in Figure 1). The most common
use of simulation if to evaluate the performance of appli-
cation workloads when executed at different scales on can-
didate platforms. Fast simulations can provide a first per-
formance approximation before proceeding with resource-
intensive testing on or even purchasing of real compute in-
frastructures.

Several large projects have used SimGrid in this context
due to its SMPI component being able to simulate the ex-
ecution of (almost) unmodified MPI applications. Evaluat-
ing the performance of classical application workloads on
particular platforms and/or with particular runtime sys-
tems is so important to the HPC community that several
"proxy apps" have been developed and maintained over
the years. These correspond to representative MPI appli-
cations for various application domains (ECP proxy appli-
cations [56], MeteoFrance proxy applications [57]) and to
standard MPI benchmarks from various benchmark suites
(HPL, CodeVault, Trinity-Nersc, CORAL). Many such ap-
plications have been executed directly with SMPI, and
are now part of SimGrid’s integration testing infrastruc-
ture [58], along with the test suite for the OpenMPI im-
plementation of the MPI standard [59] and the Intel MPI
benchmarks [60]. The S4BXI project [61] has developed a
full-fledged simulator of the Portals 4 network API [62] us-
ing SimGrid, in the context of MPI applications. The goal
is not only to enable in-simulation performance evaluation
capabilities, but also to perform what-if analyses to decide
promising areas for hardware platform design optimiza-
tion. S4BXI uses a multimodel simulation approach, by
which SimGrid’s SMPI feature is used for fast simulation
of some portions of the execution and much slower, but
highly accurate, simulation techniques are used to simu-
late other portions. The BigDFT project [63, 64], which pro-
vides open-source software for simulating macromolecular
systems at the nanoscale, uses SimGrid to include simu-
lated executions in its continuous integration process and
regression testing process. Finally, SimGrid has also been
used by Intel and Bull/Atos to explore different solutions
and configurations for hardware components of HPC plat-
forms, such as network interconnects or node size [3].

Key to the success of the above projects is SimGrid’s
scalability and accuracy levels. But key to their feasibility
in the first place is the use of some of the extensibility and
usability features added to SimGrid v4. All these projects
use the composite platform features (Section 5.1) for better
usability of SimGrid when describing complex HPC plat-
forms. The advanced modeling mechanisms (Section 4.3)
are also used heavily to make the accurate simulation mod-
els of MPI point-to-point and collective communications.
Some of these projects also rely on the extensibility plugin
feature (Section 4.2), e.g., for energy consumption simula-

tion.
A notable HPC project that uses SimGrid but does not

target MPI is StarPU [65]. It provides a unified runtime
system for programming heterogeneous multicore archi-
tectures (i.e., multicore processors with accelerators and/or
coprocessors, such as GPUs). StarPU integrates with Sim-
Grid so that StarPU applications can seamlessly execute in
simulation mode, which is a powerful testimony to Sim-
Grid’s usability. Simulated executions are also used for
StarPU’s continuous integration and performance evalua-
tion purposes, and have been instrumental in uncovering
performance bugs in StarPU. StarPU builds on SimGrid’s
models and abstractions to develop its own models and
abstractions for the simulation of GPUs [48], which was
made possible by the extensibility capabilities of SimGrid
v4, namely rich and unified resources (Section 4.1) and ad-
vanced modeling (Section 4.3).

7 Impact on scalability

The usability and extensibility features described in this
work have required a full rewrite of SimGrid v3’s mono-
lithic simulation core as well as performing API over-
hauls, including moving from C to C++. Therefore, one
may wonder whether these developments have had a
negative impact on scalability. To answer this question
we consider a benchmark simulator that implements a
coordinator-worker application (available on GitHub [66]).
Each worker actor executes on one core of a multi-core host
and a single coordinator actor executes on one core of a
separate host. All hosts are interconnected over a network
topology that comprises 100 network links. The route be-
tween any two hosts consists of 10 randomly selected links.
The core speed of each host is sampled uniformly between
100 and 200 Mflop/sec, and the bandwidth of each link is
sampled uniformly between 100 and 200 MB/sec. The co-
ordinator greedily assigns workunits to idle workers. Each
workunit entails sending 100 MB of data from the coordina-
tor to the worker, and performing 100 Mflops of computa-
tion at the worker. The simulation of energy consumption
is enabled. We built this benchmark for both SimGrid v3
and SimGrid v4 in the same Debian 12 Docker image (us-
ing the same compiler), and executed it on one core of a
dedicated 2.3GHz Intel Xeon Platinum 8380 CPU.

Figure 13 shows results when simulating the execu-
tion of between 4,000 and 60,000 workunits on 1,000 4-
core hosts. As expected, simulation time increases with
the number of workunits (since more discrete events need
to be simulated) and memory footprint is roughly con-
stant (since memory is freed each time a workunit com-
pletes). The most striking observation is the large reduc-
tion in memory footprint when going from SimGrid v3 to
SimGrid v4. Specifically, SimGrid v4 leads to at least a 4.1x
reduction in memory footprint. This is due to optimiza-
tions of data structures and to the move from C to C++,
allowing the use of smart pointers with reference counting

14

10000 20000 30000 40000 50000 60000
of workunits

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
)

SimGrid v3

SimGrid v4
100

150

200

250

300

350

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Simulation Time
Maximum RSS

Figure 13: Simulation time and memory footprint vs. num-
ber of workunits on 1,000 4-core hosts for a benchmark
coordinator-worker simulator, using SimGrid v3 and v4.
Lines show average values over 10 repeats; error bars show
minimum and maximum values.

for automated garbage collection to avoid memory leaks.
The use of smart pointers and the extensibility and usabil-
ity improvements described in this work do cause increases
in simulation time. But these increases are largely offset by
usage of the highly optimized data containers provided by
the C++ standard library and by the rounds of optimiza-
tions that have been applied to the source code over the
last decade. As a result, for this benchmark SimGrid v4
leads to at least a 1.45x reduction in simulation time when
compared to SimGrid v3.

10 20 30 40 50 60
of cores / host (1000 hosts)

0

10

20

30

40

50

Ti
m

e
(s

ec
)

SimGrid v3

SimGrid v4

0

1000

2000

3000

4000

5000

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Simulation Time
Maximum RSS

Figure 14: Simulation time and memory footprint vs. num-
ber of workers for executing 60,000 workunits for a bench-
mark coordinator-worker simulator, using SimGrid v3 and
v4. Lines show average values over 10 repeats; error bars
show minimum and maximum values.

Figure 14 shows results when simulating the execution
of 60,000 workunits on 1,000 hosts where the number of
cores per host varies from 4 to 60. As expected memory
footprint increases due to the fact that each worker actor on
each core of the simulated worker hosts has a memory foot-
print throughout the whole simulated execution. One may
expect the execution time to be constant, since the num-
ber of simulated discrete events does not depend on the
number of worker actors. But as the number of worker ac-
tors increases, so does the number of concurrent simulated

activities, which in turn increases the computational com-
plexity of the LMM solver (linearly). In these results, for
the same reasons as for the results in Figure 13, SimGrid
v4 leads to at least a 1.40x memory footprint reduction and
a 4.21x simulation time reduction when compared to Sim-
Grid v3.

Overall, while this work has focused on describing fea-
tures that make SimGrid v4 significantly more extensible
and more usable than SimGrid v3, the above results show
that it is also significantly more scalable.

8 Conclusion

The primary research and development goals of the Sim-
Grid simulation framework have been accuracy and scala-
bility. A key accomplishment is that SimGrid can achieve
high accuracy and scalability while remaining versatile,
i.e., it has been used for conducting simulations for broad
ranges of PDC domains and platforms. In spite of these
achievements, a shortcoming of SimGrid has been its us-
ability: the relatively low-level simulation abstractions it
provided made the implementation of simulators of com-
plex systems a labor-intensive process. Another shortcom-
ing was extensibility. Although SimGrid provided simula-
tion models that catered to the common case, it was difficult
to users to extend these models for research- or domain-
specific purposes. In this work we have described sev-
eral usability and extensibility improvements implemented
over the last decade. These improvements have enabled
many research results and a led to a rich ecosystem of de-
velopment and production tools.

Many simulation challenges have been addressed over
the last couple of decades resulting by PDC simulation
frameworks that provide various levels of accuracy, scal-
ability, versatility, extensibility, and usability. Although
future improvements along these five axes are still possi-
ble, the state of PDC simulation is now sufficiently mature
for broader and overarching challenges to be tackled. One
such challenge is simulation calibration: picking the sim-
ulation model parameter values in a way that maximizes
simulation accuracy with respect to some ground-truth. A
review of research articles that have used SimGrid-based
simulators in recent years shows that calibration is often
not performed, and that when it is performed is is mostly
a labor-intensive and manual process [67]. A clear future
research direction is the development of an automated sim-
ulation calibration tool that can be used by PDC simulator
users to achieve desirable trade-offs between accuracy and
scalability. Another broad challenge is that of the dupli-
cation of effort when it comes to simulator development.
Many SimGrid simulator developers implement their own
simulation abstractions using the mechanisms in Sections 4
and 5. The question is that of how these custom-developed
abstractions, which would often be useful to others, can
be contributed back to SimGrid. Relying on pull requests
is too labor-intensive (code reviews, increasing amount of

15

code that must be maintained and documented using the
SimGrid standards, regular release schedule constraints,
etc.). An alternative approach, used successfully by the ns-
3 network simulation framework [68], is to establish a Sim-
Grid app store on which contributors can publish their sim-
ulation abstractions as standalone components (composite
abstractions, programmatic platform descriptions, plugin
implementations, implementations of reusable distributed
system building blocks).

References

[1] The SimGrid Project, http://simgrid.org (2024).

[2] H. Casanova, A. Giersch, A. Legrand, M. Quinson,
F. Suter, Versatile, Scalable, and Accurate Simulation
of Distributed Applications and Platforms, Journal
of Parallel and Distributed Computing 74 (10) (2014)
2899–2917. doi:10.1016/j.jpdc.2014.06.008.

[3] P. Bédaride, A. Degomme, S. Genaud, A. Legrand,
G. S. Markomanolis, M. Quinson, M. Stillwell, F. Suter,
B. Videau, Toward Better Simulation of MPI Applica-
tions on Ethernet/TCP Networks, in: Proceedings of
the 4th International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Perfor-
mance Computer Systems (PMBS), 2013. doi:10.
1007/978-3-319-10214-6_8.

[4] P. Velho, L. M. Schnorr, H. Casanova, A. Legrand, On
the Validity of Flow-Level Tcp Network Models for
Grid and Cloud Simulations, ACM Transactions on
Modeling and Computer Simulation 23 (4) (Dec. 2013).
doi:10.1145/2517448.

[5] P. Velho, A. Legrand, Accuracy Study and Improve-
ment of Network Simulation in the SimGrid Frame-
work, in: Proceedings of the 2nd Intl. Conf. on Sim-
ulation Tools and Techniques, 2009. doi:10.4108/
ICST.SIMUTOOLS2009.5592.

[6] K. Fujiwara, H. Casanova, Speed and Accuracy of
Network Simulation in the SimGrid Framework, in:
Proceedings of the 1st International Workshop on
Network Simulation Tools, 2007. doi:10.4108/
nstools.2007.2010.

[7] A. Lèbre, A. Legrand, F. Suter, P. Veyre, Adding
Storage Simulation Capacities to the SimGrid Toolkit:
Concepts, Models, and API, in: Proceedings of the
15th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, Shenzen, China, 2015.
doi:10.1109/CCGrid.2015.134.

[8] L. Pouilloux, T. Hirofuchi, A. Lebre, SimGrid VM: Vir-
tual Machine Support for a Simulation Framework
of Distributed Systems, IEEE Transactions on Cloud
Computing (Sep. 2015). doi:10.1109/TCC.2015.
2481422.

[9] A. Degomme, A. Legrand, G. Markomanolis, M. Quin-
son, M. Stillwell, F. Suter, Simulating MPI applica-
tions: the SMPI approach, IEEE Transactions on Par-
allel and Distributed Systems 18 (8) (2017) 2387–2400.
doi:10.1109/TPDS.2017.2669305.

[10] A. Rizvi, T. Toha, M. Lunar, M. Adnan, A. Islam,
Cooling Energy Integration in SimGrid, in: Proceed-
ings of the 2017 International Conference on Network-
ing, Systems and Security, 2017, pp. 132–137. doi:
10.1109/NSysS.2017.7885814.

[11] F. C. Heinrich, T. Cornebize, A. Degomme,
A. Legrand, A. Carpen-Amarie, S. Hunold, A. Orgerie,
M. Quinson, Predicting the Energy-Consumption of
MPI Applications at Scale Using Only a Single Node,
in: Proceedings of the 2017 IEEE International Con-
ference on Cluster Computing, 2017, pp. 92–102.
doi:10.1109/CLUSTER.2017.66.

[12] L. Stanisic, E. Agullo, A. Buttari, A. Guermouche,
A. Legrand, F. Lopez, B. Videau, Fast and Accurate
Simulation of Multithreaded Sparse Linear Algebra
Solvers, in: Proceedings of the 2015 IEEE 21st Inter-
national Conference on Parallel and Distributed Sys-
tems, 2015, pp. 481–490. doi:10.1109/ICPADS.
2015.67.

[13] A. Fanfakh, Predicting the Performance of MPI Appli-
cations over Different Grid Architectures, Journal of
University of Babylon for Pure and Applied Sciences
27 (1) (2019) 468–477. doi:10.29196/jubpas.
v27i1.2232.

[14] L. Stanisic, A Reproducible Research Methodology
for Designing and Conducting Faithful Simulations of
Dynamic HPC Applications, Ph.D. thesis, Université
Grenoble Alpes, France (2015).
URL https://theses.hal.science/
tel-01248109v2/document

[15] T. Cornebize, A. Legrand, F. C. Heinrich, Fast and
Faithful Performance Prediction of MPI Applications:
the HPL Case Study, in: Proceedings of the 2019 IEEE
International Conference on Cluster Computing, 2019,
pp. 1–11. doi:10.1109/CLUSTER.2019.8891011.

[16] SimGrid’s Use in Research Publications, https://
simgrid.org/usages.html (2023).

[17] G. Kecskemeti, S. Ostermann, R. Prodan, Fostering
Energy-Awareness in Simulations Behind Scientific
Workflow Management Systems, in: Proceedings of
the 7th IEEE/ACM Intl. Conf. on Utility and Cloud
Computing, 2014, pp. 29–38. doi:10.1109/UCC.
2014.11.

[18] G. F. Riley, T. R. Henderson, The ns-3 Net-
work Simulator, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 15–34. doi:10.1007/
978-3-642-12331-3_2.

16

http://simgrid.org
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1007/978-3-319-10214-6_8
https://doi.org/10.1007/978-3-319-10214-6_8
https://doi.org/10.1145/2517448
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5592
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5592
https://doi.org/10.4108/nstools.2007.2010
https://doi.org/10.4108/nstools.2007.2010
https://doi.org/10.1109/CCGrid.2015.134
https://doi.org/10.1109/TCC.2015.2481422
https://doi.org/10.1109/TCC.2015.2481422
https://doi.org/10.1109/TPDS.2017.2669305
https://doi.org/10.1109/NSysS.2017.7885814
https://doi.org/10.1109/NSysS.2017.7885814
https://doi.org/10.1109/CLUSTER.2017.66
https://doi.org/10.1109/ICPADS.2015.67
https://doi.org/10.1109/ICPADS.2015.67
https://doi.org/10.29196/jubpas.v27i1.2232
https://doi.org/10.29196/jubpas.v27i1.2232
https://theses.hal.science/tel-01248109v2/document
https://theses.hal.science/tel-01248109v2/document
https://theses.hal.science/tel-01248109v2/document
https://theses.hal.science/tel-01248109v2/document
https://theses.hal.science/tel-01248109v2/document
https://doi.org/10.1109/CLUSTER.2019.8891011
https://simgrid.org/usages.html
https://simgrid.org/usages.html
https://doi.org/10.1109/UCC.2014.11
https://doi.org/10.1109/UCC.2014.11
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2

[19] L. Mészáros, A. Varga, M. Kirsche, INET Framework,
Springer International Publishing, Cham, 2019, pp.
55–106. doi:10.1007/978-3-030-12842-5_2.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Kr-
ishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, D. A. Wood, The gem5 simula-
tor, SIGARCH Comput. Archit. News 39 (2) (2011) 1–7.
doi:10.1145/2024716.2024718.

[21] T. E. Carlson, W. Heirman, L. Eeckhout, Sniper: ex-
ploring the level of abstraction for scalable and ac-
curate parallel multi-core simulation, in: Proc. of the
2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, As-
sociation for Computing Machinery, New York, NY,
USA, 2011. doi:10.1145/2063384.2063454.

[22] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S.
Kim, M. Kandemir, M. Jung, Amber: Enabling Precise
Full-System Simulation with Detailed Modeling of
All SSD Resources, in: 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), 2018, pp. 469–481. doi:10.1109/MICRO.
2018.00045.

[23] G. G. Castañé, A. Núñez, J. Carretero, iCanCloud: A
Brief Architecture Overview, in: 2012 IEEE 10th Inter-
national Symposium on Parallel and Distributed Pro-
cessing with Applications, 2012, pp. 853–854. doi:
10.1109/ISPA.2012.131.

[24] D. Kliazovich, P. Bouvry, Y. Audzevich, S. U. Khan,
GreenCloud: A Packet-Level Simulator of Energy-
Aware Cloud Computing Data Centers, in: 2010 IEEE
Global Telecommunications Conference GLOBECOM
2010, 2010, pp. 1–5. doi:10.1109/GLOCOM.2010.
5683561.

[25] R. M. Fujimoto, Parallel discrete event simulation,
Commun. ACM 33 (10) (1990) 30–53. doi:10.1145/
84537.84545.

[26] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers,
R. Ross, CODES: Enabling Co-Design of Multilayer
Exascale Storage Architectures, in: Proc. of the Work-
shop on Emerging Supercomputing Technologies,
2011.

[27] C. Carothers, D. Bauer, S. Pearce, ROSS: A High-
Performance, Low Memory, Modular Time Warp Sys-
tem, in: Proc. of the 14th ACM/IEEE/SCS Workshop
of Parallel on Distributed Simulation, 2000, pp. 53–60.
doi:10.1109/PADS.2000.847144.

[28] S. Böhm, C. Engelmann, xSim: The extreme-scale sim-
ulator, in: Proc. of the International Conference on
High Performance Computing & Simulation, 2011, pp.
280–286. doi:10.1109/HPCSim.2011.5999835.

[29] M.-Y. Hsieh, R. Riesen, K. Thompson, W. Song,
A. Rodrigues, SST: A Scalable Parallel Framework
for Architecture-Level Performance, Power, Area and
Thermal Simulation, The Computer Journal 55 (2)
(2012) 181–191. doi:10.1093/comjnl/bxr069.

[30] SST/macro 14.1: User’s Manual, https:
//raw.githubusercontent.com/
sstsimulator/sst-macro/refs/heads/
master/manual-sstmacro-14.1.pdf (2024).

[31] R. Buyya, M. Murshed, GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing,
Concurrency and Computation: Practice and Experi-
ence 14 (11 2002). doi:10.1002/cpe.710.

[32] T. Goyal, A. Singh, A. Agrawal, Cloudsim: Sim-
ulator for Cloud Computing Infrastructure and
Modeling, Procedia Engineering 38 (2012) 3566–3572.
doi:https://doi.org/10.1016/j.proeng.
2012.06.412.

[33] E. U. Yousuf Khan, T. Rahim Soomro, M. Nawaz Brohi,
iFogSim: A Tool for Simulating Cloud and Fog Ap-
plications, in: Proceedings of the International Con-
ference on Cyber Resilience, 2022, pp. 01–05. doi:
10.1109/ICCR56254.2022.9996018.

[34] G. Kecskemeti, DISSECT-CF: A Simulator to Foster
Energy-Aware Scheduling in Infrastructure Clouds,
Simulation Modelling Practice and Theory 58 (2015)
188–218. doi:https://doi.org/10.1016/j.
simpat.2015.05.009.

[35] S. Ostermann, K. Plankensteiner, R. Prodan,
T. Fahringer, GroudSim: An Event-Based Simu-
lation Framework for Computational Grids and
Clouds, in: Proceedings of the Euro-Par 2010 Par-
allel Processing Workshops, 2011, pp. 305–313.
doi:10.1007/978-3-642-21878-1_38.

[36] F. Mastenbroek, G. Andreadis, S. Jounaid, W. Lai,
J. Burley, J. Bosch, E. van Eyk, L. Versluis, V. van Beek,
A. Iosup, Opendc 2.0: Convenient modeling and sim-
ulation of emerging technologies in cloud datacen-
ters, in: Proc. of the 21st IEEE/ACM International
Symposium on Cluster, Cloud and Internet Comput-
ing (CCGrid), 2021, pp. 455–464. doi:10.1109/
CCGrid51090.2021.00055.

[37] G. Keller, M. Tighe, H. Lutfiyya, M. Bauer, DC-
Sim: A data centre simulation tool, in: Proc. of
the IFIP/IEEE International Symposium on Integrated
Network Management, 2013, pp. 1090–1091.

[38] X. Li, X. Jiang, P. Huang, K. Ye, DartCSim: An en-
hanced user-friendly cloud simulation system based
on CloudSim with better performance, in: Proc. of the

17

https://doi.org/10.1007/978-3-030-12842-5_2
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/MICRO.2018.00045
https://doi.org/10.1109/MICRO.2018.00045
https://doi.org/10.1109/ISPA.2012.131
https://doi.org/10.1109/ISPA.2012.131
https://doi.org/10.1109/GLOCOM.2010.5683561
https://doi.org/10.1109/GLOCOM.2010.5683561
https://doi.org/10.1145/84537.84545
https://doi.org/10.1145/84537.84545
https://doi.org/10.1109/PADS.2000.847144
https://doi.org/10.1109/HPCSim.2011.5999835
https://doi.org/10.1093/comjnl/bxr069
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://doi.org/10.1002/cpe.710
https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.412
https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.412
https://doi.org/10.1109/ICCR56254.2022.9996018
https://doi.org/10.1109/ICCR56254.2022.9996018
https://doi.org/https://doi.org/10.1016/j.simpat.2015.05.009
https://doi.org/https://doi.org/10.1016/j.simpat.2015.05.009
https://doi.org/10.1007/978-3-642-21878-1_38
https://doi.org/10.1109/CCGrid51090.2021.00055
https://doi.org/10.1109/CCGrid51090.2021.00055

2nd IEEE International Conference on Cloud Comput-
ing and Intelligence Systems, Vol. 01, 2012, pp. 392–
396. doi:10.1109/CCIS.2012.6664434.

[39] S. Sotiriadis, N. Bessis, N. Antonopoulos, A. Anjum,
SimIC: Designing a New Inter-cloud Simulation Plat-
form for Integrating Large-Scale Resource Manage-
ment, in: Proc. of the 27th IEEE International Confer-
ence on Advanced Information Networking and Ap-
plications (AINA), 2013, pp. 90–97. doi:10.1109/
AINA.2013.123.

[40] S. Sotiriadis, N. Bessis, N. Antonopoulos, Towards
Inter-cloud Simulation Performance Analysis: Ex-
ploring Service-Oriented Benchmarks of Clouds in
SimIC, in: Proc. of the 27th International Conference
on Advanced Information Networking and Applica-
tions Workshops, 2013, pp. 765–771. doi:10.1109/
WAINA.2013.196.

[41] Y. Shi, X. Jiang, K. Ye, An Energy-Efficient Scheme for
Cloud Resource Provisioning Based on CloudSim, in:
Proc. of the IEEE International Conference on Clus-
ter Computing, 2011, pp. 595–599. doi:10.1109/
CLUSTER.2011.63.

[42] L. Bobelin, A. Legrand, D. A. G. Márquez, P. Navarro,
M. Quinson, F. Suter, C. Thiery, Scalable Multi-
Purpose Network Representation for Large Scale Dis-
tributed System Simulation, in: Proceedings of the
12th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing, 2012, pp. 220–227.
doi:10.1109/CCGrid.2012.31.

[43] M. Quinson, C. Rosa, C. Thiery, Parallel Simulation
of Peer-to-Peer Systems, in: Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012, pp. 668—-675.

[44] R. Jhala, R. Majumdar, Software model checking,
ACM Comput. Surv. 41 (4) (2009). doi:10.1145/
1592434.1592438.

[45] M. Laurent, E. Saillard, M. Quinson, The MPI Bugs Ini-
tiative: a Framework for MPI Verification Tools Eval-
uation, in: Proc. of the 5th IEEE/ACM International
Workshop on Software Correctness for HPC Appli-
cations (Correctness), 2021, pp. 1–9. doi:10.1109/
Correctness54621.2021.00008.

[46] G. Cooperman, M. Quinson, Sthread: In-Vivo
Model Checking of Multithreaded Programs, The
Art, Science, and Engineering of Programming 4 (3)
(2020). doi:10.22152/programming-journal.
org/2020/4/13.

[47] B. Camus, A.-C. Orgerie, M. Quinson, Co-simulation
of FMUs and Distributed Applications with SimGrid,
in: Proceefings of the ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, 2018, pp.
145–156. doi:10.1145/3200921.3200932.

[48] L. Stanisic, S. Thibault, A. Legrand, B. Videau, J.-
F. Méhaut, Faithful Performance Prediction of a Dy-
namic Task-Based Runtime System for Heterogeneous
Multi-Core Architectures, Concurrency and Computa-
tion: Practice and Experience 27 (16) (2015) 4075–4090.
doi:https://doi.org/10.1002/cpe.3555.

[49] C. Courageux-Sudan, L. Guegan, A.-C. Orgerie,
M. Quinson, A Flow-Level Wi-Fi Model for Large
Scale Network Simulation, in: Proceedings of the In-
ternational Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, 2022.
doi:10.1145/3551659.3559022.

[50] Message Passing Interface Forum, MPI: A
message-passing interface standard version 4.0,
https://www.mpi-forum.org/docs/mpi-4.0/
mpi40-report.pdf (Jun. 2021).

[51] P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter,
H. Casanova, M. Quinson, Single Node On-Line Sim-
ulation of MPI Applications with SMPI, in: Pro-
ceedings of the 25th IEEE International Parallel and
Distributed Processing Symposium, 2011. doi:10.
1109/IPDPS.2011.69.

[52] SimGrid “Frankenstein" example simulator,
https://github.com/henricasanova/
simgrid_frankenstein (2024).

[53] H. Casanova, R. Ferreira da Silva, R. Tanaka,
S. Pandey, G. Jethwani, S. Albrecht, J. Oeth, F. Suter,
Developing Accurate and Scalable Simulators of
Production Workflow Management Systems with
WRENCH, Future Generation Computer Systems 112
(2020) 162–175. doi:10.1016/j.future.2020.
05.030.

[54] P.-F. Dutot, M. Mercier, M. Poquet, O. Richard, Bat-
sim: a Realistic Language-Independent Resources and
Jobs Management Systems Simulator, in: Proceed-
ings of the 20th Workshop on Job Scheduling Strate-
gies for Parallel Processing, 2016. doi:10.1007/
978-3-319-61756-5_10.

[55] T. Özden, T. Beringer, A. Mazaheri, H. M. Fard,
F. Wolf, ElastiSim: A Batch-System Simulator for Mal-
leable Workloads, in: Proceedings of the 51st Interna-
tional Conference on Parallel Processing, 2023. doi:
10.1145/3545008.3545046.

[56] ECP Proxy Apps, https://
proxyapps.exascaleproject.org/
ecp-proxy-apps-suite/ (2023).

[57] Y. Zheng, P. Marguinaud, Simulation of the Per-
formance and Scalability of Message Passing Inter-
face (MPI) Communications of Atmospheric Models
Running on Exascale Supercomputers, Geoscientific
Model Development 11 (8) (2018) 3409–3426. doi:
10.5194/gmd-11-3409-2018.

18

https://doi.org/10.1109/CCIS.2012.6664434
https://doi.org/10.1109/AINA.2013.123
https://doi.org/10.1109/AINA.2013.123
https://doi.org/10.1109/WAINA.2013.196
https://doi.org/10.1109/WAINA.2013.196
https://doi.org/10.1109/CLUSTER.2011.63
https://doi.org/10.1109/CLUSTER.2011.63
https://doi.org/10.1109/CCGrid.2012.31
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1109/Correctness54621.2021.00008
https://doi.org/10.1109/Correctness54621.2021.00008
https://doi.org/10.22152/programming-journal.org/2020/4/13
https://doi.org/10.22152/programming-journal.org/2020/4/13
https://doi.org/10.1145/3200921.3200932
https://doi.org/https://doi.org/10.1002/cpe.3555
https://doi.org/10.1145/3551659.3559022
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1109/IPDPS.2011.69
https://doi.org/10.1109/IPDPS.2011.69
https://github.com/henricasanova/simgrid_frankenstein
https://github.com/henricasanova/simgrid_frankenstein
https://doi.org/10.1016/j.future.2020.05.030
https://doi.org/10.1016/j.future.2020.05.030
https://doi.org/10.1007/978-3-319-61756-5_10
https://doi.org/10.1007/978-3-319-61756-5_10
https://doi.org/10.1145/3545008.3545046
https://doi.org/10.1145/3545008.3545046
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://doi.org/10.5194/gmd-11-3409-2018
https://doi.org/10.5194/gmd-11-3409-2018

[58] SMPI Proxy Apps, https://framagit.org/
simgrid/SMPI-proxy-apps (2023).

[59] OpenMPI Test Suite, https://github.com/
open-mpi/mpi-test-suite (2023).

[60] Intel®MPI Benchmarks, https://github.com/
intel/mpi-benchmarks (2023).

[61] J. Emmanuel, M. Moy, L. Henrio, G. Pichon, S4BXI: the
MPI-ready Portals 4 Simulator, in: Proceedings of the
29th IEEE International Symposium on the Modeling,
Analysis, and Simulation of Computer and Telecom-
munication Systems, 2021, pp. 1–8. doi:10.1109/
MASCOTS53633.2021.9614285.

[62] B. Barrett, R. B. Brightwell, R. Grant, K. Pedretti,
K. Wheeler, K. D. Underwood, R. Riesen, A. B. Mac-
cabe, T. Hudson, S. Hemmert, The Portals 4.1 Network
Programming Interface, Tech. Rep. SAND2017-3825,
Sandia National Laboratory, Albuquerque, NM (Apr.
2017). doi:10.2172/1365498.

[63] L. E. Ratcliff, W. Dawson, G. Fisicaro, D. Caliste,
S. Mohr, A. Degomme, B. Videau, V. Cristiglio,
M. Stella, M. D’Alessandro, S. Goedecker, T. Naka-
jima, T. Deutsch, L. Genovese, Flexibilities of Wavelets
as a Computational Basis Set for Large-Scale Elec-
tronic Structure Calculations, The Journal of Chemi-
cal Physics 152 (19) (2020) 194110. doi:10.1063/5.
0004792.

[64] F. Affinito, U. Alekseeva, C. Cavazzoni, A. Degomme,
P. D. Delugas, A. Ferretti, A. Garcia, A. Kozhevnikov,
P. Ordejón, N. Spallanzani, Second Report on Code
Profiling and Bottleneck Identification, Deliverable
d4.3, European Centre of Excellence in materials
modelling, simulations and design (2018).
URL https://www.max-centre.eu/
sites/default/files/D4.3%20Second%
20report%20on%20code%20profiling%20and%
20bottleneck%20identification.pdf

[65] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacre-
nier, StarPU: A Unified Platform for Task Schedul-
ing on Heterogeneous Multicore Architectures, CCPE
- Concurrency and Computation: Practice and Expe-
rience, Special Issue: Euro-Par 2009 23 (2011) 187–198.
doi:10.1002/cpe.1631.

[66] SimGrid “Coordinator-Worker flashback" bench-
mark simulator, https://github.com/simgrid/
coordinator_worker_flashback (2024).

[67] J. McDonald, M. Horzela, F. Suter, H. Casanova, Au-
tomated Calibration of Parallel and Distributed Com-
puting Simulators: A Case Study, in: Proc. of the
25th IEEE International Workshop on Parallel and
Distributed Scientific and Engineering Computing
(PDSEC), 2024.

[68] The ns-3 App Store, https://www.nsnam.org/
docs/contributing/html/external.html
(2024).

19

https://framagit.org/simgrid/SMPI-proxy-apps
https://framagit.org/simgrid/SMPI-proxy-apps
https://github.com/open-mpi/mpi-test-suite
https://github.com/open-mpi/mpi-test-suite
https://github.com/intel/mpi-benchmarks
https://github.com/intel/mpi-benchmarks
https://doi.org/10.1109/MASCOTS53633.2021.9614285
https://doi.org/10.1109/MASCOTS53633.2021.9614285
https://doi.org/10.2172/1365498
https://doi.org/10.1063/5.0004792
https://doi.org/10.1063/5.0004792
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://doi.org/10.1002/cpe.1631
https://github.com/simgrid/coordinator_worker_flashback
https://github.com/simgrid/coordinator_worker_flashback
https://www.nsnam.org/docs/contributing/html/external.html
https://www.nsnam.org/docs/contributing/html/external.html

	Introduction
	Related work
	Fundamental simulation abstractions
	Resources
	Activities
	Activity abstraction
	Activity simulation

	Actors
	Actor abstraction
	Actor simulation
	Model checking ability

	Extension mechanisms
	Rich and unified resources
	Plugins
	Advanced modeling mechanisms

	Better usability via composite abstractions and programming models
	Composite platforms
	Composite network routes
	Composite activities
	Composite programming models

	Impact on simulation practice
	Distributed cyberinfrastructure simulation
	Resources and jobs management systems simulation
	HPC runtimes and applications

	Impact on scalability
	Conclusion

