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Abstract: As Map-Reduce emerges as a leading programming
paradigm for data-intensive computing, today’s frameworks which
support it still have substantial shortcomings that limit its potential
scalability. In this paper we discuss several directions where there
is room for such progress: they concern storage efficiency under
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massive data access concurrency, scheduling, volatility and fault-
tolerance. We place our discussion in the perspective of the current
evolution towards an increasing integration of large-scale distributed
platforms (clouds, cloud federations, enterprise desktop grids, etc.). We
propose an approach which aims to overcome the current limitations
of existing Map-Reduce frameworks, in order to achieve scalable,
concurrency-optimized, fault-tolerant Map-Reduce data processing on
hybrid infrastructures. This approach will be evaluated with real-
life bio-informatics applications on existing Nimbus-powered cloud
testbeds interconnected with desktop grids.

Keywords: Map-Reduce, cloud computing, desktop grids, hybrid
infrastructures, bio-informatics, task scheduling, fault tolerance

1 Introduction

The “data-intensive science” is emerging as a new paradigm for scientific discovery
that reflects the increasing value of observational, experimental and computer-
generated data in virtually all fields, from physics to the humanities and social
sciences. As the volumes of generated data become increasingly higher, current
solutions for data storage and processing show their limitations. In this context,
Map-Reduce has arisen as a promising programming paradigm. Initially pushed by
Google, it rapidly gained interest among a large number of cloud service providers,
mainly for its potentially high performance scalability for data-intensive analysis.

At the core of Map-Reduce frameworks stays a key component with a huge
impact on their performance: the storage layer. To enable scalable parallel data
processing, this layer must meet a series of specific requirements. First, efficient
fine-grained access to huge files is needed, since Map-Reduce applications deal with
a very large number of small records of data. Second, a high throughput needs to
be sustained when a large number of clients access the same files concurrently.
Handling massively concurrent reads AND writes is here an important challenge. A
popular optimization technique employed in today’s Map-Reduce frameworks is to
leverage locality by shipping the computation to nodes that store the input data;
the goal is to minimize data transfers between nodes. For this reason, the storage
layer must be able to provide the information about data location. This data
layout exposure helps the framework to efficiently compute smart task schedules
by placing tasks as close as possible to the data they need.

Although specialized file systems have been designed to address some of
these critical needs (e.g. HDFS [27], GoogleFS [8]), they still have several major
limitations. Most Map-Reduce applications process a huge number of small files,
often in the order of KB: text documents, pictures, web pages, scientific datasets,
etc. Each such object is typically stored by the application as a file in a distributed
file system or as an object in a specialized storage service. With the number of files
easily reaching the order of billions, a heavy burden lies on the underlying storage
service, which must efficiently organize the directory structure such that it can
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efficiently lookup files. Therefore, one important challenge is to find scalable ways
to organize data and to avoid complex namespaces that are slow to browse and
maintain. Another limitation regards the metadata centralization. In their original
flavor, HDFS and GoogleFS use a single-node namespace server architecture,
which acts as a single container of the file system metadata. Decentralization is a
promising alternative, but it can be source of metadata consistency issues.

More importantly, the existing storage approaches also suffer from limited
throughput under heavy access concurrency. HDFS does not support concurrent
writes to the same file, and the data cannot be overwritten nor appended
to. While HDFS is not optimized for small I/O operations, it uses client side
buffering to improve the throughput. An important challenge is to define a
consistency semantics and to implement a concurrency control mechanism for
it to sustain a high throughput under heavy concurrency, while offering a clear
set of semantic guarantees. Moreover, dedicated fault tolerance mechanisms which
efficiently leverage the specifics of Map-Reduce software architectures are needed,
as traditional solutions employed by current systems do not appear satisfactory
enough.

Finally, an important challenge regards the target execution infrastructures.
While the Map-Reduce programming model has become very visible in the cloud
computing area, it is also subject to active research efforts on other kinds of large-
scale infrastructures, such as desktop grids. We claim that it is worth investigating
how such efforts (currently done in parallel) could converge, in a context where
large-scale distributed platforms become more and more connected together.

The work presented in this position paper introduces an approach which
aims to overcome the limitations mentioned above, in order to achieve scalable,
concurrency-optimized, fault-tolerant Map-Reduce data processing on hybrid
infrastructures relying on clouds and desktop grids. We are designing and
implementing our approach through an original architecture for scalable data
processing: it combines two approaches, BlobSeer [20] and BitDew [7], which have
shown their benefits separately (on clouds and desktop grids respectively) into
a unified system. The global goal is to improve the behavior of Map-Reduce-
based applications on the target large-scale infrastructures. We will experiment
the effectiveness of our approach on Nimbus clouds in connection with desktop
grid testbeds, with real-life workloads generated by data mining bio-chemistry and
bioinformatics applications.

2 Motivations

2.1 An Application Case Study

In this work we consider a motivating scenario coming from the bio-chemistry
area: it concerns protein structure analysis. Proteins are major components of
life, involved in lots of biochemical reactions and vital mechanisms. Proteins also
strongly participate to the molecular infrastructure of organisms (cell, organs,
tissues). The three-dimensional (3D) structure of a protein is essential for its
function and for its participation to the whole metabolism of a organism. However,
due to experimental limitations, few structures of proteins have been determined
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Target Data size (models) Time
Ara H1 23 3 h 18 m
Ara H1 3,541 73 h 10 m

Figure 1 Computation time in drug and food allergy experiments with SuMo

with respect to the number of known protein sequences. Indeed, there are roughly
60,000 structures referenced in a unique database, the Protein Data Bank (PDB),
whereas millions of protein sequences are recorded in tens of other databases. To
model the structure of a protein or to infer its function, an usual way is to compare
its structural model to the whole set of known structures.

The SuMo (Surf the Molecules) [11] application permits coarse-grain
comparisons of two protein structures. SuMo performs structural protein analysis
by comparing the structure of the protein against a set of reference structures
stored in a database. SuMo can for example make a comparison of a set of protein
structures against the whole PDB, representing hundreds of gigabytes of data. The
method is available online as a web portal opened to the scientific community [10].

The SuMo software was used to determine cross reaction allergy. An allergen
database was created with the Modeome tool, which is an automatic homology
modeler. From 6,000 initial allergen sequences, 3,541 models were computed and
the database was converted in SuMo format. The experiment was done with
this database and the "arachide Ara H1" allergen as the query component.
The computations were ran on an intel Xeon 5160 3.00GHz 4-CPU 4GB RAM
computer with a CentOS linux distribution. A first run was done with this allergen,
pairwise compared to a set of 23 models. The computation time was 3 hours and
18 minutes, using full-time three CPU-cores. In the second run, the allergen was
compared to a larger set, the whole 3,541-models database, and required 73 hours
and 10 min (see the table in Figure 1). The results were compared to the literature,
showing a great concordance with previous works.

The challenge now is to analyze larger datasets with the SuMo method,
taking advantage of a Map-Reduce framework over a cloud computing hardware
configuration or a hybrid testbed consisting of multiple clouds or combining
clouds with (enterprise) desktop grid testbeds. The goal is to define the optimal
configuration to split the data to fit the "Map" step. This first step consists in
compiling the reference database and storing it according to the data placement
rules of the used cloud. The second step, the "Reduce" one, consists in filtering
and gathering the results, for example with a filter putting a threshold on the top
10 hits.

For pharmaceutical and biotech industries, such an implementation running
over a cloud computing facility opens several new applications for drug design.
Rather than searching for 3D similarities into structural-biology data, it could
become possible to classify the entire structural space and to periodically update
all derivative predictive models with new experimental data. This is a typical
data-intensive application that can leverage the Map-Reduce model for a scalable
execution on large-scale distributed platforms. Having a cloud- and dektop-grid-
enabled version of SuMo will also be representative and help to define best
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practices for the usage of other bioinformatics applications on the clouds and on
hybrid infrastructures.

2.2 On the Usefulness of Hybrid Infrastructures

The goal of this work is to investigate ways to achieve scalable Map-Reduce
processing on emerging large-scale distributed infrastructures. In the first place,
we consider cloud infrastructures as made available today by IaaS (Infrastructure-
as-a-Service) cloud service providers. As mentioned in Section 1, data storage
facilities available on such clouds are still rudimentary and do not fit the needs
of data-intensive applications with substantial requirements in terms of highly
concurrent data sharing. Making progress in this direction is our first goal.
Second, we also consider Desktop Grids as a type of large-scale infrastructure with
specific characteristics in terms of volatility, reliability, connectivity, security, etc.
In the general case, Desktop Grids rely on resources contributed by volunteers.
Enterprise Desktop Grids are a particular case of Desktop Grids which leverage
unused processing cycles and storage space available within an enterprise. Making
such facilities available to external users is actually at the origin of the Cloud
Computing concept! The emergence of cloud infrastructures has opened new
perspectives to the development of Desktop Grids, as new types of usage may
benefit from a hybrid, simultaneous use of these two types of infrastructures.
We envision a typical scenario where an enterprise would not use dedicated, on-
site hardware resources for a particular need for data-intensive analysis (e.g.,
to process commercial statistics): it would rather rely on free unused internal
resources (using the Enterprise Desktop Grid model) and, in extension to them,
would rent resources from the cloud when needed. Both architectures are suitable
for massively parallel processing. This is a sample scenario that could benefit
from the potential advantages of using such hybrid infrastructures. Finally, more
complex combinations of platforms resulting from the use of multiple clouds in
extension to an Enterprise Desktop Grid, for instance, can be imagined. The
general architecture we are proposing can cope with such a general scenario.

3 Our Proposal: Global Architecture Overview

Our first focus is the data storage and management architecture, which aims
to enable highly-scalable Map-Reduce-based data processing on various physical
platforms: clouds, desktop grids or hybrid infrastructures built by combining
these two. To build this architecture, we choose to rely on two building blocks
which have already shown their benefits, as shown in Figure 2. One of them is
BlobSeer [20], a distributed data management system that combines distributed
metadata management with multi-versioning techniques to enable fine-grain access
to massive, distributed data under heavy concurrency. Preliminary studies [25]
with BlobSeer as a storage substrate in Map-Reduce frameworks for Hadoop-like
file systems have already demonstrated substantial gains for many access patterns
which exhibit concurrency: concurrent reads to the same file, concurrent writes
to the same file, concurrent reads (or writes) to different files. Consequently,
BlobSeer appears as an appropriate approach that outperfoms Hadoop’s HDFS
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Figure 2 The global architecture of the hybrid approach.

file systems for Map-Reduce processing on clouds. BitDew [7], a data-sharing
platform for desktop grids, is the complementing building block. Within BitDew,
we design a new network of storage peers. As usual, it handles content delivery,
but also, more originally, the main collective data operations which exist in Map-
Reduce, namely the Scatter (distribution of file chunks), Shuffle (redistribution of
intermediate outputs) and Combine (assemblage of the final result) phases. These
two data management systems will be used in conjunction to experiment with
hybrid infrastructures.

Second, we aim to introduce new scheduling techniques for large executions of
Map-Reduce instances, able to scale over heterogeneous platforms (see Section 5).
From the low level details of the scheduling of instance creations to the scheduling
of map and reduce tasks over various platforms, we integrate scheduling heuristics
at several levels of the software suite.

Finally, we explore techniques to improve the execution of Map-Reduce
applications on large-scale infrastructures with respect to fault tolerance and
security (detailed in Section 6). As each of these aspects alone is a considerable
challenge, our goal is not to address them in an extended way: we will rather
focus on a few specific aspects related to the support of the Map-Reduce paradigm
on clouds and on desktop grids. Given the dynamic nature of such platforms
and the long runtime and resource utilization of Map-Reduce applications, an
efficient checkpoint-restart mechanism becomes paramount in this context. We
propose a solution to this challenge that aims at minimizing the storage space and
performance overhead of checkpoint-restart.
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4 Focus: Data Storage Architecture

4.1 Concurrency-optimized Storage and Processing on Clouds: BlobSeer

In this section we introduce BlobSeer [20, 17], a concurrency-optimized data-
management system for data-intensive distributed applications. BlobSeer can help
to overcome some of the limitations presented in Section 1 and to provide new
perspectives in the context of cloud data storage. To meet the specific requirements
of Map-Reduce based data-intensive applications for large-scale infrastructures, the
BlobSeer system was designed to comply with the following principles:

Massive unstructured data.

In BlobSeer, data is organized as a set of large, unstructured sequences of
bytes, denoted BLOBs (Binary Large Objects), uniquely identified. This ensures
data-location transparency, allowing users to access data only by knowing a
simple identifier, instead of being aware of the location of a specific piece of
data. Furthermore, compacting many KB-sized files generated by distributed
applications into huge files enhances scalability by reducing the management
overhead of many filenames and associated namespace hierarchies. However, to
provide a useful tool for processing such data, BlobSeer also provides an interface
for fine-grained access to the stored data sequences, enabling concurrent processes
to retrieve the needed data blocks without needing to sequentially search through
the whole BLOB.

Data striping.

Each BLOB is split into equally-sized chunks which are distributed across multiple
storage nodes. The size of each BLOB is specified by the user, so that it can be
fine-tuned according to the needs of the applications. BlobSeer is able to achieve
high aggregate transfer rates due to the balanced chunk distribution among storage
nodes, especially when considering many simultaneous clients that require access
to non-overlapping chunks of the same BLOB.

Distributed metadata management.

In BlobSeer, metadata denotes the information needed to map the location of
each BLOB chunks on the storage nodes. Each chunk is uniquely identified in the
system by its BLOB identifier, offset within the BLOB and size. Such information
is stored on specifically designed nodes and is employed by the users to discover
the location of each chunk that has to be retrieved. Distributing metadata also has
an additional advantage, namely it can eliminate single points of failure when the
metadata are replicated across multiple servers.

High throughput under heavy concurrency.

This requirement is addressed in an original way through versioning-based
concurrency control. In BlobSser, data is never overwritten. Instead, each new
WRITE performed on a specific BLOB results in a new version. Each BLOB
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Figure 3 The architecture of the BlobSeer system.

version stores only the differential update with respect to the previous versions,
but exposes the whole BLOB obtained as a result of the WRITE operation.
This approach enables an efficient implementation of concurrent updates of the
same BLOB, by considering all data and metadata immutable. Furthermore,
a versioning-based design allows for a complete decoupling between concurrent
READ and WRITE operations performed on the same BLOB.

The architecture of BlobSeer is based on a set of distributed entities illustrated
in Figure 3.

Data providers host data chunks. Each data provider is implemented as a high-
performance key-value store, which supports fast upload or download of data
chunks. This in-memory cache is backed by a persistency layer built on top
of BerkleyDB, an efficient embedded database.

The provider manager is responsible for assigning data providers to the
WRITE requests issued by users, using a configurable strategy. The default
strategy is to select the provider that stores the smallest number of chunks
and the smallest number of pending WRITE requests. More complex
strategies can be implemented if the system has access to more detailed
information about the state of the data providers and the user requirements.

Metadata providers keep track of the chunks distribution across data providers.
For each BLOB, the metadata is organized as a distributed segment tree
where each node corresponds to a version and to a chunk range within that
version. Each leaf covers just one chunk, recording the information about
the data provider where the page is physically stored. The metadata trees
are stored on the metadata providers, which are processes organized as a
Distributed Hash Table.

The version manager ensures the serialization of the concurrent WRITE
requests and the assignment of version numbers for each new WRITE
operation. Its goal is to create the illusion of instant version generation, so
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that this step does not become a bottleneck when a large number of clients
concurrently update a specific BLOB.

The client library makes available an access interface to applications. The client
supports the following operations: CREATE BLOBs, READ, WRITE or
APPEND contiguous ranges of bytes.

A typical setting of the BlobSeer system involves the deployment of a few
hundreds data providers, storing BLOBs of the order of the terrabytes. The typical
size for a chunk within a BLOB can be smaller than 1 MB, whence the challenge
of dealing with hundreds of thousands of chunks belonging to just one BLOB.
BlobSeer provides efficient support for heavily-concurrent accesses to the stored
data, reaching a throughput of 6.7 GB/s aggregated bandwidth for a configuration
with 60 metadata providers, 90 data providers and 360 concurrent writers, as
shown in [19].

4.2 BSFS: BlobSeer File System for Map-Reduce

We integrated BlobSeer with Hadoop, by building a BlobSeer-based file system
(BSFS), that can successfully be used as storage backend for Map-Reduce
applications executed with Hadoop [25]. BSFS can be used as both a stand-alone
DFS and as a replacement for HDFS in the Hadoop framework. BSFS takes
advantage of BlobSeer’s features to provide high I/O throughput and to sustain it
under highly-concurrent access to data. To this end, we implemented an API on
top of BlobSeer, with several functionalities:

Managing the file system namespace : The BSFS layer keeps the file system
metadata and directory structure, i.e., the information regarding file
properties and the hierarchy of files and directories.

Mapping files to BLOBs : BlobSeer offers a flat storage space, in which data is
kept in BLOBs uniquely identified in the system by a key. In order to use
BlobSeer as a regular DFS, BSFS maps each file to a BLOB, by associating
the file name to the BLOB id.

Implementing the Hadoop API : By implementing the file system interface
through which Hadoop accesses its storage backend, BSFS can serve as
storage for Map-Reduce applications running on top of Hadoop. Moreover,
BSFS can act as a stand-alone DFS that can be accessed through an HDFS-
like file system interface.

Communication between clients and BSFS is kept to a minimum, only for
operations concerning the file system metadata; data accesses are performed
through a direct communication between the client and the BlobSeer storage
nodes. BSFS also implements client-side buffering to reduce overhead. This
consists in prefetching a whole chunk when a read of 4 KB is issued, and in
collecting the small records issued as final output until the data collected reaches
at least the size of a chunk (64 MB by default). Hence, the actual reads and
writes from/to the underlying storage layer are performed on data large enough to
compensate for network traffic overhead.
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The benefits of using BSFS as storage layer for Map-Reduce applications were
validated through large-scale experiments; these tests compare BSFS and HDFS in
different scenarios. They show a substantial gain in execution time with respect to
HDFS (in the order of 35%). Moreover, BSFS has additional functionalities that
HDFS does not support: concurrent appends, concurrent writes at random offsets
and versioning.

4.3 Reduction-intensive data processing with MapIterativeReduce

The SuMo application motivating our work has a data intensive phase in which
a selection is made on the relevant protein structures issued from the initial
comparisons. In a MapReduce setting, this step would be implemented in the
reduce-phase. We noticed that these types of reduce-intensive algorithms are
becoming increasingly useful in many other applications which require reduction
operations for aggregation, filtering, numerical integration, etc. These algorithms
have a common pattern: data are processed iteratively and aggregated into a
single final result. Developing efficient strategies for implementing such reduction
operations in clouds is essential for applications to make effective use of the
underlying compute and storage resources, and increases the potential for major
improvements of the application performance.

However, platforms like MapReduce lack built-in support for reduce-intensive
workloads. We therefore implemented MapIterativeReduce, a framework which
extends the MapReduce programming model to better support reduce-intensive
applications and substantially improves their efficiency by eliminating the implicit
barrier between the Map and the Reduce phase. In recent work, we proposed
a MapReduce runtime [33] for public clouds, which relies on an optimized data
management layer based on BlobSeer. This storage system aggregates the free
virtual disks attached to the VMs into a globally-shared object store and exploits
data locality to support efficient application data accesses. MapIterativeReduce
leverages BlobSeer for low-latency, high-throughput under heavy concurrency data
accesses. To specifically target reduce-intensive workloads, our framework provides
support for a set of model extensions which favor more efficient scheduling for
reduce jobs. At the same time, it preserves the cleanness of the MapReduce
programming model, while facilitating its use by a large set of applications. We
evaluated MapIterativeReduce with synthetic benchmarks and with a real-life
application: compared to state-of-art solutions, our approach reduces the execution
times by up to 75% [32].

4.4 Data-intensive on Desktop Grids: BitDew

This section presents a Map-Reduce implementation targeted at Desktop Grids.
Desktop Grids harvest computing and storage power of volunteer idle desktop
computers. Very large platforms like Boinc [1] proved that volunteer peers can
provide huge storage potential.

The challenge we address here is to broaden the scope of applications that
can benefit from Desktop Grids. The typical application class for this platform
are Bag-of-Tasks applications composed of independent tasks with small input
and output data. We prove that granted we overcome several challenges, Desktop
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Grids are able to run Map-Reduce computations [13]. The first challenge comes
from the difficulty of performing the collective file operations necessary during
the shuffle phase when intermediate results are exchanged between the Map
and Reduce phases. The difficulty comes from the volatility of hosts, unstable
network conditions, the presence of NATs and firewalls that make collective
communications difficult to achieve. The second challenge comes from the high
volume of intermediate results that makes it impractical to send them all back to
the server. Result certification necessary to guarantee that the results have not
been falsified by malicious volunteers [26] must be performed in a decentralized
fashion, when it is usually centralized on existing Desktop Grid platforms. The
third challenge comes from the dependencies between Reduce and Map tasks that
can slowdown the whole process when hosts are too volatile and some perform
much slower than the others.

For Map-Reduce to perform efficiently on Desktop Grids, we propose several
solutions relying on latency hiding, distributed result checking through replication
of data and tasks and barrier-free reduction.

4.5 Architecture of Map-Reduce over BitDew

In this section we present key BitDew features and optimizations needed to run
Map-Reduce computations on Internet Desktop Grids.

BitDew [7] is a middleware developed at INRIA; its primary goal is
to provide high-level APIs to manage large data-sets on hybrid distributed
infrastructures composed of Desktop Grids, Clouds and Grids. BitDew takes care
of fault tolerance, data scheduling and supports several data transfer protocols
transparently. These features involve decisions that are driven by data attributes
provided by the programmer.

Our Map-Reduce implementation [31, 14] relies on BitDew to cope with the
difficulty of using Desktop Grids. Using the data attributes described above, we set
dependencies between map inputs, the mappers, intermediate results, the reducer
and the final result. The BitDew runtime uses the dependencies to automatically
create a data flow between the nodes. It places data on volunteer computers and
deal with faults as they occur, replicating data items on different nodes when
necessary.

In the remaining of this section we present important features and
optimizations that have been designed specifically to address Internet Desktop
Grid platforms.

Latency Hiding. To hide the high latency caused by Internet network conditions,
NATs, and firewalls, we overlap communications with computation. BitDew offers
asynchronous APIs to several synchronous transfer protocols such as HTTP and
FTP. Workers are multi-threaded so that a maximum number of Map and Reduce
threads can be configured and incoming tasks are enqueued as soon as they are
received.

Collective File Operation. Map-Reduce requires a set of collective
communications inherited from parallel programming. These operations are
1) Distribution, used to distribute the initial file chunks, 2) Shuffle, used to
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distribute intermediate results between Mappers and Reducers and 3) Combine,
used by the master node to collect the final result. To implement such collective
operations in BitDew, we designed DataCollection, used to manipulate a collection
of data as a single object, and DataChunk that are individual items of a
DataCollection.

Fault Tolerance. To deal with nodes joining and leaving the computation during
a Map task, we simply re-schedule the task data to another node. When a Reduce
task fails, we distribute all the intermediate results to a different Reduce worker.
This is achieved by setting an affinity attribute between the Reduce job and
the intermediate results. File transfer failures tolerance is done internally by the
BitDew runtime.

Barrier-Free Computation. Host churn necessitates that the barriers present
in traditional Map-Reduce implementations be removed. To avoid barriers we
duplicate input data and intermediate results. Reducer nodes examine their queue
and keep only the last version of intermediate files when duplicates exist, so
the first version of an intermediate result is reduced. Additionally, Reduce tasks
can work on segments of a key interval. Thus, unlike traditional Map-Reduce
implementations, Reduce nodes start working as soon as intermediate results are
available. The reducer knows when its task is finished because the number of data
chunks and the number of reducers are known in advance. Replication and early
reduction allows to eliminate the barrier between Map and Reduce tasks.

Scheduling. We follow the usual Map-Reduce paradigm of moving the
computation where the data resides. Map-Reduce on BitDew uses a two-level
scheduler. The first level is the BitDew scheduler that places data on nodes
according to attributes. The second level is the master node; it detects laggers
(nodes that slow down the whole computation taking too much time to perform
a single task) and can in such case increase the data replication so that another
node can take over the same task.

Distributed Result Checking. As Desktop Grid can always contain several
malicious volunteers, result certification is necessary. In this context, intermediate
results might be too large to be sent back to the server to perform this certification,
so it has to be decentralized. Here we use the majority voting certification
algorithm [16]. Input files, Map tasks and thus intermediate results are replicated
and sent to reducers. Once a reducer has received at least n of p intermediate
results, it compares them and keeps the one that appears the most. Reduce tasks
are replicated as well and the master node takes care of checking the Reduce
outputs.

Hybrid Storage. In [30], we have designed a hybrid storage system where
volunteers can provide both the storage of their home PC and some remote storage
provided by Cloud vendors such as DropBox or Amazon S3 for instance. The
system allows to choose between several file replication and Reed-Solomon-based
strategies, according to the requirement in term of reliability, security and storage
redundancy.

Incremental MapReduce. One of the strongest limitations of MapReduce is its
inefficiency to handle mutating data; when a MapReduce job is run several times
and only a subset of its input data set has changed between two job executions, all
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map and reduce tasks must be run again. In [28], we improved the framework to
enable incremental MapReduce i.e. re-run map and reduce tasks only for the data
input chunks that have changed.

5 Scheduling Issues

The Map-Reduce paradigm has been designed in order to simplify the task of
the application programmer using a large set of nodes to perform data intensive
computations. The frameworks implementing the Map-Reduce paradigm have to
schedule the Map and Reduce tasks. There are several places in a Map-Reduce
framework where optimized schedulers are needed. This includes choosing the
amount of data each node has to process, how to rebalance the data in order
to make each node get the data it has to process and choosing the order of the
transfers between the Map and Reduce tasks.

5.1 Previous Work

The main goal of the scheduling phase can be to minimize the makespan. Taking as
much parameters into account as possible makes the schedule closer to the global
optimal solution. The data processed by the Map function is made block by block.
Thus, computing the amount of data to be processed by every node is an integer
variables problem. However, as described by the Divisible Load Theory [3], this
kind of problem can be solved as a real variables problem and then rounded to
integers. This allows to compute efficiently a schedule from what is known about
the platform and about the transfer that will happen just after the end of the Map
computation.

Berlinska and Drozdowski [2] took a similar approach where they use the
Divisible Load Theory to compute the amount of data processed by each node
taking into account the time needed to transfer data between the Map and Reduce
tasks.

In their model, it is considered that the Map and Reduce operations are
performed by distinct nodes. This is a simplification that eliminates the need for
a special case where a node would transfer the data to itself. Every node starts
sequentially. That means that a given node cannot start before the previous node
has finished its sequential startup. Then, it is assumed that every node has access
to the data without contention, so that the time needed for the Map operations to
finish is directly proportional to the amount of data to process. The same happens
for the transfers between the Map and Reduce tasks. Moreover, it is considered
that every mapper node will have the same amount of data to send to every
reducer node. And finally, there is a one-port constraint that means that every
node can send or receive data to / from only one node at the same time and the
number of parallel transfer is limited.

Given their transfer scheduling algorithm, they have to use a linear program
to compute the data size for each mapper node to process. This is quite a heavy
computation that does not scale very well.
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5.2 Communications Optimization

In our work, we use the same model as Berlinska and Drozdowski and the same
constraints. Under certain circumstances, the result given by the linear program
shows some remarkable regularities. Especially, the computations end just when
the first transfer of the previous node ends. This allows to simplify the linear
program which becomes a linear system. This linear system can be solved in O(m)
time, with m being the number of mapper nodes, which makes it scale much better
than a linear program.

Another observation about the results from Berlinska and Drozdowski is that
they use a static transfer scheduler which leads to a suboptimal bandwidth usage.
By using a scheduler that starts the transfers as soon as possible, still enforcing
the same constraints on the order in which they may happen, we can reduce the
transfer duration by around 15 - 20%.

We also tried to release some constraints on the order of the transfers and allow
the transfers with higher priority to preempt other transfers. This always leads to
an improvement of the transfer time, but the improvement is then negligible.

In the near future we plan to implement this in the global framework trying
to take into account the data management by BlobSeer or BitDew. We also plan
to implement a feedback from the compute nodes to the master node in order to
adjust the schedule with respect to some measured parameters like the processing
speed or some other hard-to-guess parameters of the model.

6 Handling Fault Tolerance

The Map-Reduce paradigm was designed specifically to scale, being able to take
advantage of the computational resources in large datacenters. However, due to
the large amount of resources needed to run Map-Reduce applications and the
fact that they run on commodity hardware, failures are rather the norm than
the exception [34]. Thus, fault tolerance becomes a critical issue that needs to be
addressed.

Due to the similarities between Map-Reduce and the master-worker paradigm,
production-ready Map-Reduce frameworks handle fault tolerance by simply
rescheduling the failed tasks for another execution until they succeed. This scheme
has an important advantage: it is easy to design and implement. However, its
performance is highly dependent on the complexity of the tasks: if they take a
long time to finish and involve a lot of resources, then a simple rescheduling
wastes a lot of computational resources. As an example, consider the case of
scientific applications that can be solved using Map-Reduce but whose mappers
cannot be expressed as simple, short computations. In this case, the mappers
are rather complex and need to be expressed as mini-instances of tightly-
coupled computations. Taken to the extreme, these mini-instances might become
complex enough to even need to be distributed themselves. In this context, simple
rescheduling is not enough and needs to be complemented with more advanced
approaches than can deal with such complex mappers.

We propose the use of Checkpoint-Restart (CR) [6] to address this issue:
fault tolerance for complex mappers is achieved by saving recovery information
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periodically during failure-free execution and restarting from that information
in case of failures, in order to minimize the wasted computational time and
resources. Although extensively studied in the context of High Performance
Computing (HPC) applications, CR faces an important challenge in our context:
it needs to adapt to the datacenter infrastructure typically used for Map-Reduce
applications, i.e. build out of commodity hardware. With the growing popularity
of Infrastructrue-as-a-Service (IaaS) clouds, this infrastructure also includes a
virtualization layer that isolates Map-Reduce workloads in their own virtual
environment. We focus our efforts in this direction.

To this end, we introduced BlobCR (BlobSeer-based Checkpoint-Restart) [22],
a checkpoint-restart framework specifically optimized for tightly-coupled scientific
computations that were written using a message passing system (e.g. MPI [9]) and
need to be ported to IaaS clouds.

Unlike traditional HPC infrastructures, IaaS clouds typically feature local disk
storage that does not generate operational costs (i.e. it can be used “for free” by the
user). Leveraging local storage is a common scenario for Map-Reduce applications:
it has the potential to both improve I/O performance and cut on operational costs
compared to the typical solution of using a parallel file system. However, local disk
storage is not guaranteed to survive beyond the life-time of a VM, which can at any
point be terminated due to failures. Thus, one challenge we address is to extend
CR for the scenario where data is stored on the local disk rather than a parallel
file system. Doing so enables us to support an important CR feature that is not
available on traditional HPC infrastructures: the ability to roll back file system
changes.

To achieve this, BlobCR introduces a dedicated checkpoint repository that
is able to take incremental snapshots of the whole disk attached to the virtual
machine (VM) instances. More specifically, during normal execution, all writes of
the application processes are performed on the virtual disk. When a checkpoint
needs to be taken, the state of the processes are saved into files on the virtual disk
and then a snapshot of the virtual disk is taken. This works either at application-
level, where the process state is managed by the application itself, or at process-
level, where the process state is captured transparently at the guest operating
system level using tools such as BLCR [5]. Obviously, a mechanism must exist
that enables the application to request snapshots of its virtual disk, which can be
taken only by the physical machine. To this end, BlobCR exposes a special remote
API inside the VM machine instances. Synchronization of the snapshots to reflect
a globally consistent checkpoint is the responsibility of the checkpointing protocol.

If a VM fails, BlobCR re-deploys a new instance of it and resumes the
computation inside the VMs from the most recent successful checkpoint by
restoring the corresponding virtual disk snapshots and relaunching the application.
To facilitate the resume process, we expose VM disk snapshots as first-class
objects. All snapshots are incremental in order to minimize performance and
resource consumption overhead during execution. The snapshots are stored in a
striped fashion on the local disks, with each stripe replicated for resilience. Several
optimizations such as lazy instantiation [21] and adaptive prefetching [24] are used
to accelerate the instantiation of new VMs.

Compared to state-of-art (that uses full VM snapshots to provide fully
transparent checkpointing at the virtualization layer directly), we demonstrate
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large performance gains and much lower resource utilization [22] both using
synthetic benchmarks and real life HPC applications. Encouraged by these results,
we plan to integrate BlobCR into Hadoop (a popular open-source Map-Reduce
framework) and study its benefits in the context of complex mappers that need
to spawn mini-instances of tightly-coupled scientific computations. We expect to
obtain better overall performance and lower resource utilization compared to plain
rescheduling of the whole mapper from scratch. Since resource utilization is a
key concern on IaaS clouds (as it generates operational costs), another important
direction we aim to adress is how to reduce the checkpointing overhead in terms
of storage space and bandwidth utilization. In this context, an interesting idea to
explore is how to leverage adaptive compression schemes [18] and/or deduplication
to reduce the sizes of VM snapshots that are taken by BlobCR. Furthermore,
we are interested in the possibility of complementing checkpoint-restart with pro-
active live migration: if failures can be predicted with a relatively high confidence
level, then we could reduce the checkpointing frequency in favor of migrating
unstable VMs to more safer nodes. We already explored the possiblity of live
migration of local storage [23] with encouraging results.

7 Putting Everything Together

7.1 Overview of the Approach

One major challenge to overcome in order to execute Map-Reduce applications
on hybrid infrastructures is to connect and configure all the elements into a
coherent and efficient framework. Our goal is not to re-implement a full new Map-
Reduce framework but to leverage existing building blocks as much as possible.
Software component models [15, 29] provide concepts with respect to software
assembly architecture and code re-use. Our approach is to use a state-of-the art
component model to describe the global structure and the elements to configure.
Then, scheduling and decision algorithms are used to derive a concrete structure
of the runtime elements. Let us first introduce HLCM, the component model we
have chosen to leverage.

7.2 Introducing HLCM

High Level Component Model (HLCM) [4] is a software component model that
supports concepts of hierarchy, genericity and connectors—and in particular the
novel concepts of open connection. It aims at providing a framework to transform
a description of an application in a model independently of the resources to a
deployable assembly.

HLCM is independent of the definition of primitive components and
connections: specializations of HLCM have to define them. For example
HLCM/Gluon++ is a specialization of HLCM where primitive components and
connections are defined in Gluon++, a thin layer turning Charm++ objects [12]
into components. HLCM/Gluon++ has currently only one primitive connector:
Charm++ RMI Use/Provide.

Another example is HLCM/L2C. Low Level Component (L2C) is a component
model where primitive components are C++ classes with three kinds of primitive
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connectors: C++ Use/Provide, Corba Use/Provide and MPI communicator.
HLCM/LLCMj is a last example of specialization for Java based components.

An HLCM specialization generates a representation on an application in a
format that depends on the specialization. This generation makes use of specific
algorithms and resource models to control which non-functional concerns have to
be optimized (completion time of the application, computation cost, etc). The
actual deployment of the generated application is not handled by HLCM.

7.3 Applying HLCM to Map-Reduce processing on hybrid infrastructures

To implement the vision described in Figure 2, HLCM offers very interesting
features. First, it does not impose any primitive component model. Hence, any
native code – in Java, C++, or any other language – can be supported by HLCM
as long as a specialization is defined. Similarly, any native communication model
can be integrated with the same approach, also without introducing any overhead.
Therefore, HLCM appears as a very interesting model to manage a hybrid Map-
Reduce platform.

Second, HLCM enables to describe an abstract architecture with many choices
left to the transformation algorithm. The proposed approach is to connect the
Hybrid Dispatcher component to an arbitrary number of components of type
Map-Reduce, as shown in Figure 4. This number and the actual implementation
of these Map-Reduce components are left to the transformation algorithm.
Based on performance metrics and optimization goals, it will select the actual
implementations as well as a partitioning of the data.

The most difficult part of wrapping an existing Map-Reduce runtime into a
Map-Reduce component is to define bridges to convert data formats, if needed. For
example, BlobSeer and BitDew need specialized components to copy data to/from
their space – similarly as Hadoop works with data in HDFS.

8 Conclusions

The Map-Reduce programming model is currently subject to many research efforts,
however state-of-the-art solutions are still far from meeting many requirements
of data-intensive computing applications. This paper discusses several major
limitations in current Map-Reduce frameworks and proposes an approach which
aims to overcome these limitations. We focus on an original setting where
target execution infrastructures possibly rely on several cloud service providers in
extension to desktop grid platforms. We propose a fault-tolerant data management
architecture whose goal is to enable highly-scalable Map-Reduce data processing
on such hybrid infrastructures built by combining clouds and desktop grids. We
complement this solution with new scheduling techniques for large executions of
Map-Reduce instances, able to scale over heterogeneous platforms. All building
blocks of this architecture are connected together by means of a software
component model and are exposed to clients as a coherent and efficient Map-
Reduce framework. Current work is focusing on demonstrating the effectiveness of
the proposed integrated architecture on real platforms relying on Nimbus clouds
and on Grid’5000-based desktop grids with real-life workloads generated by data
mining bio-chemistry and bioinformatics applications.
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Figure 4 High level description of an hybrid Map-Reduce application. The value of N
as well the actual implementation of Map-Reduce component type are
determined by scheduling and decision algorithms.
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