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Abstract—The ever-increasing volumes of scientific data com-
bined with sophisticated techniques for extracting information
from them have led to the increasing popularity of ensemble
workflows which are a collection of runs of individual workflows.
A traditional approach followed by scientists to run ensembles
is to rely on simple scripts to execute different runs and manage
resources. This approach is not scalable and is error-prone,
thereby motivating the development of workflow management
systems that specialize in executing ensembles on HPC clusters.
However, when the size of both the ensemble and the target
system reach extreme scales, existing workflow management
systems face new challenges that hamper their efficient execution.

In this paper, we describe our experience scaling an ensemble
workflow from the computational biology domain from the early
design stages to the execution at extreme scale on Summit, a
leadership class supercomputer at the Oak Ridge National Lab-
oratory. We discuss challenges that arise when scaling ensembles
to several million runs on thousands of HPC nodes. We identify
challenges with composition of the ensemble itself, its execution at
large scale, post-processing of the generated data, and scalability
of the file system. Based on the experience acquired, we develop
a generic vision of the capabilities and abstractions to add to
existing workflow management systems to enable the execution
of ensemble workflows at extreme scales. We believe that the un-
derstanding of these fundamental challenges will help application
teams along with workflow system developers with designing the
next generation of infrastructure for composing and executing
extreme-scale ensemble workflows.

Index Terms—workflows, ensemble, HPC, extreme scale

I. INTRODUCTION

In many scientific domains, the investigation of important
research questions requires performing multiple complex op-
erations on large amounts of data that may be produced by
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scientific instruments, numerical simulations, or resulting from
activity logging. The rapid increase in both the complexity
of such scientific workflows and the volume of data they
process has made it intractable to manually manage the
execution of the different compute tasks and data movements
that compose these workflows. Old-fashioned scripts written
by domain scientists thus have left room for a myriad of
Workflow Management Systems (WMS) to support the onus
of the orchestration and execution of multiple interdependent
tasks on distributed systems, and let scientists focus on more
important questions.

More recently, and thanks to the ever-increasing capacity
of leadership class supercomputers and the democratization
of scientific computing on cloud resources, the complexity
of scientific workflows has reached a new level. It is now
common to combine the execution of multiple instances of a
traditional workflow into a so-called ensemble workflow. For
instance, in Molecular Dynamics, the expensive simulation
of a long trajectory can be replaced by the simultaneous
execution of multiple short-range simulations [1], [2]. The
advent of Artificial Intelligence (AI) techniques to propose
fast surrogate models of complex numerical simulations also
calls for the definition of ensemble workflows to explore vast
parameter spaces.

Domain scientists could logically expect that the execution
of large ensemble workflows on extreme scale supercomputers
could be handled by the same WMS so they can keep focusing
on science. However, scaling up to millions of tasks and thou-
sands of powerful and complex High Performance Computing
(HPC) nodes creates a whole new set of challenges. This also
comes with an important question: do the scientists have to
adapt their applications, or can the WMS be improved to
break this new scalability barrier and enable new scientific
discoveries?

In this paper, we retrace the different challenges we faced
with scaling up an application in the computational biology
domain from the execution of a few instances on a small scale
cluster in a lab to running a large ensemble workflow on one
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of the fastest supercomputers in the world. At each of these
steps, we:

• Identify the intrinsic limitations of the execution mecha-
nism used at that step;

• Identify and analyze the causes of the technical chal-
lenges we faced when increasing the scale;

• Propose solutions to these challenges that led us to the
next step;

• Discuss how the problems we faced, the lessons we
learned, and the solutions we opted for can be generalized
beyond the specific use case considered in this paper.

The rest of this paper is organized as follows. Section II
gives some details about the application and workflow man-
agement system we used and states which of their specific fea-
tures are found in a broader range of applications and systems.
Section III describes how ensemble workflows are tradition-
ally run by domain scientists, and discusses the benefits of
leveraging a workflow management system to run ensemble
workflows. In Section IV, we list the new challenges that
only appear when the scales of both the ensemble workflow
and the target HPC systems become very large. Section V
provides a path forward for workflow management systems to
better handle the execution of large-scale ensemble workflows
on large-scale HPC systems. Section VI discusses the related
work, and we provide concluding remarks in Section VII.

II. BACKGROUND

The main objective of this paper is to provide practitioners
who want to run ensemble workflows at large scale with valu-
able insight about performance pitfalls they will likely face.
Such insight has been gathered through our own experience
of scaling up a science application to be able to exploit an
HPC system using a workflow system that we introduce in
this section. However, we believe that the main features of
the considered application, workflow management system, and
HPC system are very common and correspond to the way a
broad range of scientific problems are currently solved.

A. Ensemble Workflow: iRF-LOOP

The use of AI techniques to solve complex problems is gain-
ing traction in various science domains. For instance, in the
computational biology domain, Iterative Random Forests [3]
(iRF) are used for the creation of Predictive Expression
Networks on the order of 40,000 genes or more [4]. By
iteratively creating weighted forests, iRF takes advantage of
the Random Forests ability to produce feature importance and
lead to more accurate models. In each iteration, the importance
scores from the previous iteration are used to weight features
for the current forest.

The Iterative Random Forest Leave One Out Prediction
(iRF-LOOP) application is a multi-threaded application writ-
ten in C++ that can extract explainable properties of datasets
and be used on a multitude of datasets to produce all-to-all
associations [4]. Using a matrix with n features and m samples,
iRF-LOOP will treat each feature as the dependent variable,
or Y vector, and create an iRF model with the remaining

n-1 features as the independent variables, or the X matrix.
Like iRF, iRF-LOOP can produce meaningful insights even
in cases where n is much larger than m. In practice, the iRF-
LOOP model is created by running a separate iRF instance
for each dependent variable. The larger the set of features, the
more iRF runs that are needed. The result of each individual
iRF run is a vector of size n of the importance of each
independent feature in predicting the Y vector. Each of these
runs executes a pipeline of two tasks, i.e., training followed by
prediction, reading input files that contain feature information,
and generating output files that are later post-processed to
extract information. The list of output files includes importance
vector files and a separate file for recording model weights.
Following the completion of the n individual iRF runs, the n
importance vectors are normalized and concatenated into an
n x n directional adjacency matrix, with values that can be
viewed as edge weights between the features.

The execution of iRF-LOOP for a large set of features
to treat thus corresponds to the ensemble workflow shown
in Figure 1. The structure of this particular workflow, with
a set of independent pipelines to execute, followed by the
aggregation and post-processing of the generated results, is
very typical of ensemble workflows. This initial design of
the workflow, in which a large ensemble of training and
prediction tasks is executed which generates several output
files which are then post-processed, has a strong impact on the
scalability of the workflow on large supercomputers. Scaling
up this particular workflow and running it on large HPC
systems requires addressing challenges that should benefit
other ensemble workflows from other scientific domains that
exhibit a similar structure.

Fig. 1. The iRF-LOOP workflow ensemble. Each run of the ensemble executes
a pipeline of two tasks - training and prediction. Each task produces output
data that is later post-processed to extract information.

B. Workflow Management System: Cheetah
Cheetah is a workflow management system specifically

designed for running large ensemble workflows on various
systems [5]. Cheetah has been used successfully for studying
topological parameters for in situ data analysis [6], investi-
gating different data reduction methods for scientific data [7],
developing a framework for whole device modeling simula-
tions [8], and dynamically orchestrating applications coupled
in memory [9].

Cheetah defines the Campaign abstraction to represent
an ensemble of runs. Each run is a pipeline, i.e., a



sequential or concurrent combination of compute tasks.
As a simple example, a pre-processing step followed by
a set of applications running in situ, followed by a post-
processing application step forms a typical pipeline in many
data-intensive science applications. Cheetah’s Campaign
abstraction can be used to setup a variety of execution
patterns such as single pipelines, ensemble workflows,
combination of serial and concurrently running tasks, and
large-scale MPI workflows.

1) Campaign Composition: Similar to several modern
workflow systems, Cheetah provides a Python-based interface
to compose a Campaign. It provides the capability to create
simulation runs and organize them into groups. Cheetah’s
composition interface allows setting up runs in an abstract
way without having to write shell scripts to interact with the
underlying system or its job scheduler.

To understand the outcome of composing and executing a
very large campaign, it is important to know how Cheetah
creates ensembles, and how it manages campaign metadata.
Cheetah provides primitives to create pipelines and add appli-
cations to them. Users can express lists of values for different
parameters across the application level, middleware layer,
and system level. For each parameter value, a new run is
created and added to the ensemble. As a simple example,
a scientist may test 5 different compression algorithms, and
further evaluate 5 different thread counts for each algorithm,
to create a total of 25 runs for their campaign. Runs are then
organized into groups called SweepGroups that correspond to
batch jobs on clusters. Users provide the maximum wall time
limit for each run and SweepGroup in the Campaign. Through
its machine interface and native support for several super-
computer architectures, Cheetah can calculate the resources
required to execute runs in the ensemble. The Cheetah object
model is shown in Figure 2. Metadata is stored at all levels
- Campaign, SweepGroups, and Runs to fully describe the
ensemble and its components.

Fig. 2. The Cheetah campaign model. A Campaign is a hierarchy of
SweepGroups or batch jobs, which contain the individual Runs of the ensemble
with their own workspaces.

A Cheetah Campaign is mapped to a directory schema
defined by Cheetah. SweepGroups are stored as separate direc-
tories, and ensemble Runs are provided their own workspace in
the SweepGroup. Thus, runs in the ensemble are independent
of each other, and several of them can execute concurrently de-

pending on available resources. Each SweepGroup has a top-
level JSON file that serves as the group’s manifest. It includes
all information needed to run the SweepGroup, which includes
all runs, pipeline descriptions, application information, wall
time limits, and resources requested for the SweepGroup.

Composing and executing an ensemble of runs is thus a
two-step process. The composition step is used to set up
the Campaign, its directory hierarchy, and the metadata on
the target system. The execution step is used to launch the
Campaign and execute its runs.

2) Campaign Execution: When a Campaign is launched,
the Savanna runtime engine executes the ensemble workflow
on the available resources. SweepGroups correspond to batch
jobs on the HPC machine and are submitted to the underlying
job scheduling system. Thus, submitting a full Campaign can
submit several batch jobs to the system scheduler. Savanna
monitors, executes, and reports on the status of the runs
in the Campaign, and manages metadata to represent the
output and state of runs. Partially completed Campaigns can
be resumed by re-starting the Campaign, thereby providing
support for fault-tolerant execution of ensembles. Savanna
manages the compute resources on the user’s behalf, and
dynamically orchestrates runs from the ensemble as runs finish
executing and resources become available. In the absence of
such functionality, scientists have to manually write scripts
to manage resources, which can lead to highly inefficient
executions of ensemble workflows.

Fig. 3. Architecture of the Savanna execution engine. Savanna launches a
hierarchy of threads for SweepGroups and ensemble runs. Savanna threads run
on the cluster’s batch node, whereas application processes run on the compute
nodes. Metadata information is maintained in JSON files for a SweepGroup
and individual runs in a SweepGroup.

Figure 3 shows the architecture of Savanna. It is a multi-
threaded engine in which the master thread begins execution
on the batch node of the cluster. As new runs in the ensemble
get scheduled, Savanna spawns worker threads to manage the
execution of runs and the tasks within. These threads monitor
resource utilization and the status of currently executing
ensemble runs. Tasks in a pipeline are executed on compute
nodes via the underlying scheduler’s jobstep command.
Example of job step commands are jsrun for IBM’s LSF
scheduler [10] and srun for the Slurm scheduler [11].



3) Metadata Management: As with other WMS, Cheetah
stores different types of metadata across various files. As
shown in Figure 4, at the top level, every SweepGroup
maintains two files: a read-only manifest of all runs in the
group, and an execution status file created by Savanna for
each run in the group. The manifest describes the ensemble -
it describes the pipelines and their encompassing applications
and tasks, and the list of all runs in the ensemble. The
status file is a JSON document that Savanna uses to denote
the execution status of all runs. During execution, Savanna
stores the standard output and standard error for each task
in a pipeline in separate files. It creates launcher scripts for
launching every task in the pipeline. Furthermore, when a task
completes, it records its return status and wallclock time in
files.

Fig. 4. Metadata management in the Cheetah ensemble workflow system.
For every group of runs, a job manifest describes the runs in the job, and a
status file denotes the execution status. Each run further creates several files
for each task in the run.

HPC System: Summit

Summit is a leadership-class IBM system located at the Oak
Ridge Leadership Computing Facility (OLCF). Summit is a
pre-exascale machine with a theoretical peak double-precision
performance of approximately 200 PetaFlops/s. Each of the
approximately 4,600 compute nodes on Summit contains two
IBM POWER9 processors with 21 user-level cores each, six
NVIDIA Tesla V100 accelerators, 512 GB of DDR4 memory,
96 GB of High Bandwidth Memory (HBM2) for use by the
accelerators, and 1.6TB of non-volatile memory. Each core
supports 4-way hyperthreading so that an application can
spawn a total of 168 threads on a node. Summit is connected to
an IBM Spectrum Scale filesystem providing 250PB of storage
capacity with a peak write speed of 2.5 TB/s.

As with many other supercomputing systems, Summit em-
ploys a three-level node design. Users get access to login nodes
when they log in to Summit, where they can submit a batch
job. When an allocation is granted to this job, it begins its
execution on a batch node. The ‘jsrun’ job step command of
the IBM’s LSF scheduler is then used to execute tasks on
compute nodes.

III. FROM A TRADITIONAL APPROACH TO USING A
WORKFLOW MANAGEMENT SYSTEM

In this section, we describe how ensemble workflows are
traditionally run by domain scientists and the impacts this
approach has on both their performance and scalability We
then discuss the benefits of leveraging a workflow management
system to run ensemble workflows and how it enables studies
at larger scales.

Running Ensembles Using a Traditional Approach

The traditional way for a domain scientist to run an en-
semble workflow, such as iRF-LOOP, on an HPC system
is to rely on simple scripts rather than a more complex
workflow management system. It typically requires a manual
pre-processing phase in which the researcher creates a shell
script for submitting jobs to the targeted compute cluster. This
script interacts with the batch scheduler to request a set of
nodes and run jobs on them. As the iRF-LOOP application
generates several output files that later need to be post-
processed, the user creates a hierarchy of directories on the
file system to conveniently store the inputs and outputs of
the individual runs of the ensemble. Then, they submit runs in
groups or ‘sets’ to fully exploit the resources allocated through
the batch scheduler. Upon successful completion of a set, the
script submits the next set of runs on the available resources.
This process is then repeated until all the runs in the ensemble
have been executed. This approach is illustrated in Listing 1
for a small ensemble of iRF-LOOP runs.

#BSUB −nnodes 3

jsrun −p1 irfloop f1 &
jsrun −p1 irfloop f2 &
jsrun −p1 irfloop f3 &
wait

jsrun −p1 irfloop f6 &
jsrun −p1 irfloop f7 &
jsrun −p1 irfloop f8 &
wait

Listing 1. Shell script for running an IRF-LOOP ensemble. Each run requires
one compute node. The number of concurrent job steps must match the
number of nodes allocated.

Each run of the iRF-LOOP workflow runs on one compute
node of Summit and uses all cpu cores available on the node.
Three nodes are first requested from the batch scheduler to
run the ensemble. This means that at most three runs can
be launched concurrently. An explicit wait command acts as
a barrier before the next set of three ensemble runs starts
running.

This traditional, and mostly manual approach, has two main
issues beyond putting all the burden of managing the ensemble
workflow on the domain scientist, which is error-prone and
not scalable. First, special care needs to be taken to ensure
that only as many runs as the number of nodes allocated
in the batch job are executed concurrently. Oversubscribing



resources by submitting more runs than available compute
nodes is likely to lead to a global execution failure. Second,
this approach only works well if all the runs in the ensemble
workflow have similar execution times. When different runs
have widely varying runtimes, as is the case for iRF-LOOP
and also for many applications whose execution time is input-
sensitive, it leads to highly inefficient utilization of resources.
This is illustrated by the top part of Figure 5. We can see the
runs that finish early in their set cause the compute node to
remain idle up to the next synchronization point. The overall
throughput of the ensemble workflow execution essentially
depends on the slowest run in each set of runs. Handling
the straggler runs efficiently requires implementing advanced
scheduling techniques that are usually not available to domain
scientists who follow this script-based management approach.

Fig. 5. Resource utilization in the original IRF-LOOP ensemble setup
compared with the node utilization in Cheetah. The original method uses
explicit wait statements to synchronize job steps, whereas Cheetah can
dynamically track and provision resources at runtime.

Leveraging a Workflow Management System

To address the operational and performance issues raised by
the traditional approach, we created a Cheetah specification for
the iRF-LOOP ensemble. Domain scientists now only have to
create the campaign specification in Python. They do not have
to put a lot of thinking into the writing of shell scripts that fit
the constraints of the underlying system nor to interact with
the batch scheduler. The hierarchy of directories to store input
and output files for each run is also handled by the workflow
management system.

At runtime, this specification is automatically and trans-
parently translated into launcher scripts and job submission
commands. The WMS also dynamically provisions compute
nodes for better resource utilization. Once a run is complete
and its node is released, the workflow management system
immediately schedules the next run on the free node. We can
see in the bottom part of Figure 5 that compute nodes do not
have to wait for an explicit synchronization anymore. This
removes the idle times created in the traditional approach,
hence improving the overall throughput.

Assessing the performance improvement

To further evaluate the performance benefits of running an
ensemble workflow using a specialized workflow management
system, we created an ensemble using the 2019 American
Community Survey produced by the United States Census
Bureau [12]. The dataset consists of 1,606 features for 3,220
counties obtained using the tidycensus package [13].

To run this full dataset using the traditional approach,
multiple jobs were ultimately submitted to the batch scheduler,
each with its own specific resource allocation request. Thus,
multiple hand-written shell scripts have to be written and
executed by the domain scientists.

Cheetah allows scientists to create the ensemble through
its Python-based composition interface and easily express the
parametric evaluation of the features of the dataset. Once the
parameters to be explored were listed, they were grouped
into a single SweepGroup that has all the runs of the full
ensemble. The size of the resource allocation was then set for
this SweepGroup but can be modified between executions. A
partially complete ensemble can simply be re-submitted by
modifying the resource allocation if desired. The metadata in
the WMS are used to resume a partially completed ensemble
from a previous checkpoint.

We measure performance in terms of the feature throughput
per node-hour, which is the number of features executed in one
node hour on Summit. Figure 6 compares the performance of
the original approach with that of Cheetah. Using the former,
we obtain a combined throughput of 0.8 features per node-
hour for the full ensemble, whereas we obtain 7 features per
node-hour with the latter using Cheetah, which results in an
8× improvement over the original method.

Fig. 6. Performance improvement obtained through using a workflow manage-
ment system such as Cheetah. Feature throughput per node-hour on Summit
improves from 0.8 features/node-hour using the conventional approach to 7
features/node-hour using the Cheetah WMS.

In addition to the performance advantages of using a WMS
for executing ensembles, an abstract campaign specification
further provides a portable way of running ensembles on
different systems. The conventional approach requires creating
submission scripts for every system on which iRF-LOOP is



run. Using Cheetah, the same Python specification can be used
on different systems with minimal changes.

Opening Way to Large-Scale Ensemble Studies

An additional benefit of using a workflow management
system comes with the simplification of the expression of
large-scale ensembles that were far beyond the reach following
the traditional approach. The complexity of the scripts and
the likeness of introducing errors or making bad scheduling
decisions severely limit the scale of the imaginable studies.

In the specific case of running the iRF-LOOP ensemble
workflow, using Cheetah as a workflow management system
led the domain scientists to consider the processing of a
dataset with over 81,000 features, where each feature consists
of 50 unique train and test sets. This corresponds to an
ensemble workflow that consists of over 81, 000× 50 = over
4,000,000 individual runs. From a performance scalability
analysis standpoint, two campaign designs were considered:

• Capability-class campaign design - Create a single
batch job containing all runs. This design allows us to
explore running a large number of concurrent instances
in the ensemble in a single job, whose resource allocation
can be set to several thousand compute nodes. Capability-
class jobs are designed to conduct large, wide runs in
shorter amounts of time.

• Capacity-class campaign design - Create one batch job
for each of the 81,000+ features in the ensemble with
50 runs for each feature in the job. Thus, the campaign
consists of a large number of batch jobs that are submitted
to the system. The system scheduler determines how
the jobs are scheduled according to implicit policies. As
each job consists of 50 runs that run on one compute
node each, a batch job can scale up to a maximum of
50 nodes. A directory hierarchy in which every feature
has its separate directory yields a more natural campaign
design. Capacity-class designs may take longer to execute
as the system scheduler can implement different priorities
when faced with a large number of small-sized batch jobs.

Increasing the scale of an ensemble workflow to millions
of individual tasks and targeting an execution at the full scale
of a flagship supercomputer with thousands of nodes push the
workflow management system to new limits and challenges
that can only arise at such scales. In the next section, we list
these challenges and identify their causes.

IV. CHALLENGES IN ENSEMBLE WORKFLOW SCALING

In this section, we describe the challenges encountered
during the composition and execution of large ensemble work-
flows consisting of millions of individual runs. As shown in
Figure 7, these challenges include memory management and
performance of campaign creation, limitations of job queuing
policies, task scaling, file system scaling, and post-processing
of large amounts of data.

Fig. 7. A schematic of the challenges in scaling ensemble workflows to large
scale. Challenges span the areas of campaign composition, execution, and
overall data management.

A. Challenges with Campaign Composition

The Python-based Campaign specification interface of
Cheetah provides abstractions to compose batch jobs and set
independent workspaces for the runs composing the ensemble
workflow. It allows scientists to represent applications, their
runtime configuration, parameters, and environment settings.

1) Memory Management: The Cheetah composition func-
tion reads an ensemble specification created by the user and
creates the Campaign object in memory along with the
SweepGroup and Run objects. It also creates the campaign
directory hierarchy on the system. For the capability-class
design with a single large batch job consisting of millions of
runs, the composition function ran out of memory to create all
Run objects of the single large SweepGroup. As a workaround,
the composition function’s programming logic was modified to
first create an empty SweepGroup and incrementally add Runs
to it. Python iterator methods were used wherever applicable
to read information about the runs sequentially and free up
internal memory. This avoids creating the entire Campaign
model in memory before writing it to the file system.

2) Performance: Composing a full ensemble workflow with
several million runs took almost 4 hours. This includes reading
the Python specification and creating the campaign directory
hierarchy on the file system. To get a deeper understanding
of the performance of creating a large ensemble, we profiled
the composition function for an ensemble with 500,000 runs.
Figure 8 shows the time taken by the different components of
the composition function.

We observe that at large scale, file creation denoted as
‘io open’ takes 22% of the total time. The total I/O overhead
including file creation and metadata operations takes almost
40% of the total time. File system and metadata operations
include directory creation, running ‘stat’ operations on di-
rectories, and creating symbolic links to input data. JSON
serialization and deserialization operations take 20% of the
total time. As Cheetah maintains metadata in JSON files for
each Run, and a JSON file that serves as a global manifest of
Runs in a SweepGroup, JSON functions are called for each of



Fig. 8. Breakdown of the campaign creation time. The major components are
Python computations, file system and I/O operations, and JSON serialization
and deserialization operations. File system, I/O, and metadata operations take
almost 40% of the time, and JSON operations take 20% of the total time.

the four million runs of the ensemble. This results in the high
overhead of JSON serialization and deserialization operations.
The difference in file system overhead for the capability-
and capacity-class ensemble designs is negligible, as we have
over 4,00,000 Run directories in a single SweepGroup for the
capability-class ensemble, and over 4,081,000 directories for
the capacity-class ensemble that contains one directory for
each SweepGroup, which is an increase in directory count
by 2%.

Although campaign creation is a one-time setup, a multi-
threaded version of the composition function was developed to
reduce the runtime for creating the large campaign. A simple
data parallelism algorithm was used to distribute SweepGroups
amongst threads. Figure 9 shows the performance improve-
ments obtained by using multiple threads. These results were
generated by composing an ensemble with 30,000 runs on a
compute node on Summit.

Fig. 9. Scaling the campaign creation operation using multiple threads on
a compute node with 160 hyperthreads. The configuration with 20 threads
shows the best performance.

We obtain the best performance using 20 threads which

leads to 7× speedup over the single-threaded case. The multi-
threaded composition function with 20 worker threads was
then used to generate the large campaign with 4 million runs.
The runtime was reduced to 85 minutes from 4 hours, which
is a 2.7× improvement over the sequential case. While further
analysis of the overhead is beyond the scope of our study, we
estimate file system operations to take longer as the file and
directory counts are much higher.

Lesson 1: Creating an ensemble and its directory structure
can be memory-intensive and time-consuming at large
scale.

B. Challenges with Campaign Execution

We now discuss the challenges associated with running the
large campaign. Note that the capability-class design submits
a single large job, whereas the capacity-class design submits
a large number of jobs to the batch scheduler. The challenges
with scaling a large ensemble include job scaling limitations
and limitations with scaling individual jobs.

Job Scaling. The capacity-class ensemble design creates a
SweepGroup each for the 80,000+ features of the iRF-LOOP
ensemble. Submitting the full Cheetah campaign submits all
the SweepGroups as individual batch jobs. However, job queue
policies on supercomputers often limit the number of jobs that
can be in a queue at a time for every user. The Perlmutter
supercomputer at Lawrence Berkeley National Laboratory
limits the number of jobs in the system to 5,000 [14], whereas
the default job queue on Summit has a limit of 100 jobs. This
prevents launching all SweepGroups of the ensemble together.
To circumvent this limitation, several options were considered:

• Allow the WMS to submit jobs in batches to limit the
number of concurrently running jobs. For instance, users
would submit a configurable batch of 100 jobs at a time
on Summit. However, this is only feasible for moderately-
sized ensembles. For an ensemble with 80,000+ batch
jobs, a user would have to manually submit a total of
800 jobs over the life of the full ensemble.

• Add a special post-processing task in every job that would
submit the next batch job before the current job exited.
However, addressing job timeouts and modifying a post-
processing task for a running batch of jobs can become
tedious. We discuss alternative solutions that provide
deeper integration with job queue policies in Section V.

Lesson 2: Job queue policies restrict the number of
concurrent batch jobs that can be run.

Task Scaling. As commands such as jsrun are submitted from
a batch node, the number of concurrent runs is limited by the
per-user process limit of 4,096 processes on a batch node. As
each jsrun job step creates 3 processes, and JSM management
may approximately create up to 23 processes, this creates an
upper limit of approximately 1,350 simultaneous runs in a
single batch node.



Fig. 10. The scalability limitation for the computational biology workflow
in terms of the number of compute nodes allocated versus the number of
compute nodes that can be used. A limit on the number of job steps that can
execute concurrently limits the number of compute nodes that can be used.

As shown in Figure 10 this limits the scalability of a batch
job in the capability-class campaign design to 1,350 nodes
out of the approximately 4,600 nodes of Summit, which is
only 30% of the full supercomputer capacity. Furthermore,
for ensemble workflows that execute at a higher granularity
of a task per CPU core as opposed to a task running on an
entire node, the maximum number of concurrent runs is further
limited as we need 42 calls to jsrun to use all 42 cores on a
Summit node. This limits the scale to only (1350/42) = 32
nodes on Summit.

Lesson 3: The limit on the number of concurrent job step
invocations limits the task scalability of the ensemble.

C. Challenges with Data Management

Metadata Scaling. WMS often use widely used file formats
such as JSON for metadata storage as it is an easy-to-use, in-
terchangeable, human-readable data format. Cheetah maintains
the execution status of runs of a SweepGroup in a JSON file.
During execution, the state of every ensemble run is managed
and updated in this status file. However, updating a value in
a JSON file causes the entire file to be loaded in memory
every time before it is written back to the file system. For
the capability-class ensemble design with a single metadata
file, the metadata can become significantly large, e.g., over
500 Megabytes for our use case. As each run undergoes two
status updates (‘not started’ → ‘running’ → ‘done’/‘killed’),
metadata updates quickly become a bottleneck for workflow
scalability. Figure 11 shows the time taken to update a single
field in a JSON file as its size increases.

At full scale with over 4 million entries, it takes 70 seconds
to update a single field. Furthermore, special care needs to
be taken to ensure that interruptions during an update do not
leave the metadata file in an inconsistent state. While JSON
has not traditionally been developed for large data, it remains
popular for storing metadata due to its interchangeable format
and hierarchical key-value pair schema.

Fig. 11. Performance of metadata updates with the increasing scale of the
ensemble. The X-axis shows the number of runs in the campaign manifest
JSON file. The Y-axis shows the time to make a single update in the metadata
file. The maximum value of 4 million runs represents the capability-class
ensemble design. At the largest scale, it takes 70 seconds to update a single
value in the JSON metadata file.

Lesson 4: Popular file formats for metadata management
perform poorly at scale.

File System Scalability. The most challenging aspect of scal-
ing ensemble workflows to the order of several million runs is
the scalability of the file system. Table I lists the file system
overhead for the large ensemble with iRF-LOOP.

TABLE I
FILESYSTEM OVERHEAD AT LARGE SCALE

No. of files created by iRF-LOOP per run 13
No. of files created by Cheetah per run of iRF-LOOP 12
No. of runs in the large ensemble > 4 million
No. of run directories for the full ensemble > 4 million
No. of files expected after full ensemble is completed > 100 million

Each run of the application workflow creates several files,
whereas the WMS itself creates its own files for managing
information. Thus, for 4 million runs in the campaign, over
four million directories containing a total of over one hundred
million files are created. This leads to prohibitively high
overhead for the file system. The sheer number of files
created can easily overwhelm the metadata server of the file
system. We also run the risk of exceeding the number of
inodes available per user on the supercomputer. As the file
system is a shared resource and has limited bandwidth as
compared to the compute capability of a machine, stressing
it can have adverse effects on the overall performance of the
workflow and the fidelity of data.

Lesson 5: Storing data in a few files per run of the
ensemble easily leads to millions of files at scale.

1) Data Post-processing: Along with challenges associated
with file system scalability, post-processing poses an additional



challenge. Similar to many science workflows, iRF-LOOP
performs a post-processing step in which importance vector
files created in a Run are later analyzed to extract information.
This step is performed after the entire ensemble is complete.
Reading back several files from every Run ultimately requires
reading back several million files, which poses a significant
I/O bottleneck.

Lesson 6: Post-processing data from a large ensemble is
prohibitively expensive.

V. PATH FORWARD FOR SCALABLE WORKFLOW SYSTEMS

The challenges identified for executing large ensembles span
several areas of campaign execution and data management.
Issues such as job and task scaling can be addressed by the
WMS by providing more efficient orchestration mechanisms.
However, file system issues arise due to the data model
adopted by the application workflow and can be solved by
modifying the application to use more efficient tools and
libraries. However, avoiding code re-designs for specific use
cases, and instead designing abstractions in the workflow
management system is an attractive option for mitigating the
gap between ensemble designs and their efficient execution at
large scale. In this section, we discuss potential workarounds
for the challenges described with running large ensemble
campaigns on HPC machines.

A. Flexible Ensemble Orchestration

WMS such as HTCondor [15] can dynamically generate and
schedule tasks, but there is need for a mechanism that allows
concurrently spawning and coordinating multiple instances
of the WMS itself. This will allow individual runs of the
ensemble to be dynamically assigned to a running batch job,
which will allow for easy switching between capacity-class
and capability-class execution patterns.

B. Scalable Task Scheduling

Pilot job systems have been developed primarily to address
scalable task scheduling. Pilot WMS manage resources on
behalf of the user by spawning lightweight threads on com-
pute resources and coordinating them with a master process.
However, in cases where each run of the ensemble itself is a
distributed application that uses an HPC framework such as
MPI [16] for multi-processing, using Pilot WMS can be non-
trivial. Pilot WMS need to evolve to seamlessly integrate with
MPI where each run of the ensemble is an MPI application.
The main workflow can also be modified to use MPI for nested
parallelism by spawning sub-communicators for each run of
the ensemble. However, in addition to requiring users to mod-
ify the application source code, libraries such as MPI cannot
be used easily on architectures such as cloud environments,
which causes a hindrance in porting the workflow to different
architectures. Alternatively, a WMS can bypass the job step
submission provided by schedulers and use the underlying
process management interface such as PMIX [17] provided
on clusters.

C. Abstractions for Data Management

It is typical for applications to use files to store data. The
file model provides an easy and clear separation between
logical data entities and is used widely for managing data.
However, it does not scale well as the number of files
increases into the millions or even hundreds of thousands. For
ensemble workflows in which a first ‘pass’ such as a training
loop creates millions of files which are then post-processed
separately, a different approach is needed to ensure scalability.
In the HPC domain, scientific data management libraries
and frameworks that provide abstractions for storing and
streaming data on different endpoints are used for managing
large data efficiently. While they have not been traditionally
used to address large data generated by ensemble workflows,
abstractions for using efficient data formats, data streaming,
and using the storage hierarchy on modern supercomputers
can be highly impactful for managing large data. Figure
12 shows the opportunities for providing efficient data
management in workflow management systems from the HPC
domain.

Fig. 12. Opportunities for abstractions in WMS for using efficient data
management techniques. The traditional POSIX file I/O model can be replaced
by scientific data formats. Additionally, data reduction and online analysis
through streaming can be used in combination with policy-based usage of the
tiered storage that includes SSDs, parallel file systems (PFS), and data stores
(DS).

Using Scientific Data Management Libraries. To prevent a
large ensemble from creating millions of files, applications can
use high-performance, scientific data management libraries
such as ADIOS [18] or HDF5 [19] that provide a custom
self-describing file format for storing data. Data stores [20]
and user-space file systems such as DeltaFS [21] can also be
used as an alternative to the file-based model of data storage.
Most scientific libraries work on local workstations as well
as HPC machines, which can provide a portable solution for
managing large data. To adapt file-based ensembles to use
more efficient data storage models, WMS must provide rich
abstractions that allow for easy translation from traditional
file-based models to scientific data formats.



Automatic Provisioning of the Storage Hierarchy. Modern
supercomputers consist of tiered storage that is comprised
of device memory, local or remote flash memory, disk-based
parallel file systems, and tape storage. Machines such as
Summit and the upcoming exascale machine at OLCF,
Frontier, have a node-local NVM device that can be used as
temporary storage for large data [22]. Other systems such
as the Perlmutter system at NERSC provide burst buffer
nodes that are shared amongst compute nodes [23]. WMS
should transparently be able to use different storage layers for
storing data, instead of using the shared file system directly.
Temporary files can be stored on faster, flash-based storage
so that they can be read back efficiently for post-processing.

Scalable Metadata Management. File formats such as JSON
are widely used for metadata storage as it is a lightweight
text-based format that is human readable. However, they
are not intended for large-sized metadata. WMS must use
more sophisticated mechanisms such as scalable databases or
scientific data formats for storing metadata.

Online Data Analysis. Along with managing large data,
expensive post-processing has long been a challenge for HPC
applications. There is increasing focus on online and in situ
data processing methods for science in which data is processed
in memory without storing it on the file system first. Data
is staged to remote resources for processing. Additionally,
data reduction techniques help reduce the overall size of data
[24]. This prevents expensive operations of storing and reading
large data back, which can often be a bottleneck for science
applications. WMS can help large ensembles by providing
abstractions for online processing of data, along with options
to apply data reduction methods to reduce the overall data size.
For workflows that permit partial post-processing, a WMS
can dynamically post-process a subset of data and remove
temporary files to reduce the pressure on the file system.

VI. RELATED WORK

There is a wide range of workflow management systems
available for general science use cases as well for domain-
specific ad hoc solutions [25]. Systems such as the RADICAL-
Ensemble Toolkit (EnTK) [26], libEnsemble [27], Balsam [28]
are systems that have been used for HPC-scale ensemble runs.
These systems focus mainly on providing abstract composition
interfaces and high task throughput execution of runs. They
are commonly referred to as Pilot systems as they manage
resources on behalf of the user and aim to efficiently use them.

The EnTK toolkit provides for scalable task execution by
bypassing the job step commands such as ‘jsrun’ and ‘srun’.
Instead, they use the underlying process management interface
such as PMIX [17] available on HPC machines. EnTK creates
separate directories for different stages of an ensemble Run
and manages metadata in several different files. The libEnsem-
ble system executes job step commands to run tasks on
compute resources. It integrates the Balsam [29] system such

that libEnsemble worker processes run Balsam on compute
nodes. This potentially provides better task scaling on large
HPC systems. Systems such as HTCondor [15], Nextflow [30],
Pegasus [31] provide the capability to dynamically schedule
jobs, which can be useful for capacity-class ensemble designs.
Other systems that provide high-throughput task execution
are Parsl [32] which provides high throughput task executors
on HPC and cloud platforms, the Flux system [33] which
is a more general-purpose runtime system for scalable task
execution, and Swift/T [34] which is a language for distributed
parallel scripting. The ExaWorks project [35] aims to bring
several of these WMS together to provide a common SDK
to democratize workflow technologies. It provides a portabil-
ity layer across different HPC workload managers to create
portable workflows with a standard API.

In general, we observe that some of the challenges described
in this paper are addressed partially by existing WMS, but
tighter integration with policies around resource usage set by
supercomputing facilities and managing large data remain a
challenge going forward. An ecosystem of workflow tools
that provides an abstraction that allows ensemble workflows to
select desired features can help scale them on to large systems.

VII. CONCLUSION

In this paper, we describe challenges associated with scaling
an ensemble workflow to extreme scales on a leadership class
supercomputer. While the use of a Workflow Management
System (WMS) helps utilize resources efficiently for ensemble
runs, scaling the ensemble to several million runs presents
challenges often overlooked by existing WMSs. The chal-
lenges faced include 1) memory and performance issues during
campaign/ensemble composition, 2) limitations on the number
of concurrent batch jobs in the ensemble, 3) limitations on
the scalability of runs in a job, 4) file system and metadata
scalability issues due to overhead imposed by the large number
of files and directories, and 5) overhead of post-processing
large volumes of data. To overcome these limitations, we
discuss techniques to design the next generation of workflow
tools and the abstractions necessary to compose and execute
large ensembles in a scalable and portable way, ranging from
workstations to supercomputers.
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