Determining Levels of Detail for Simulators of Parallel and
Distributed Computing Systems via Automated Calibration

Jesse McDonald
Information and Computer Sciences
University of Hawai‘i at Manoa
Honolulu, Hawai‘i, USA

Frédéric Suter
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Ewa Deelman
Information Sciences Institute
University of Southern California
Marina Del Rey, California, USA

Abstract

There are two sources of inaccuracy when simulating parallel and
distributed computing systems: (i) a simulator implemented at an
insufficient level of detail; and (ii) incorrectly calibrated simula-
tion parameter values. Increasing the simulator’s level of detail can
improve accuracy, but at the cost of higher space, time, and/or soft-
ware complexity. Furthermore, evaluating the intrinsic accuracy of
a simulator requires that its parameters be well-calibrated. Mak-
ing decisions regarding the level of detail is thus challenging. We
propose a methodology for instantiating the simulation calibration
process and a framework for automating this process, which makes
it possible to pick appropriate levels of detail for any simulator. We
demonstrate the usefulness of our approach via two case studies
for two different domains.

CCS Concepts

« Computing methodologies — Modeling and simulation;
Simulation tools; Parallel computing methodologies; Dis-
tributed computing methodologies.

Notice: This manuscript has been authored in part by UT-Battelle, LLC under Con-
tract No. DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government purposes. The Department
of Energy will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PMBS’25, St. Louis, MO

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1871-7/2025/11

https://doi.org/10.1145/3731599.3767698

Yick-Ching Wong
Information and Computer Sciences
University of Hawai‘i at Manoa
Honolulu, Hawai‘i, USA

Rafael Ferreira da Silva
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Kshitij Mehta
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

Loic Pottier
Lawrence Livermore National
Laboratory
Livermore, California, USA

Henri Casanova

Information and Computer Sciences

University of Hawai‘i at Manoa
Honolulu, Hawai‘i, USA

Keywords

Simulation of parallel and distributed computing systems, simula-
tion accuracy, simulation calibration

1 Introduction

Parallel and Distributed Computing (PDC) research often involves
executing application workloads on hardware platforms. Many re-
searchers resort to simulating these executions because simulation
makes it possible to explore hypothetical scenarios, can yield 100%
reproducible results, and can require less time, labor, carbon foot-
print, and/or funding. The main concern with simulation is accuracy,
i.e., how representative simulated executions are of ground-truth,
real-world executions. A common way to improve simulation accu-
racy is to increase the level of detail at which real-world behaviors
are simulated. But doing so incurs costs (higher space, time, and/or
software complexity), raising the question: at which level of detail
should a simulator be implemented? [48]

Consider a PDC system of interest and a simulator of that system.
Key questions are whether the simulator can achieve some desired
accuracy at its current level of detail, whether a higher level of
detail is required, or whether a lower lever of detail is tolerable.
Answering these questions is challenging because simulation error
not only comes from the implemented level of detail, but also from
possibly incorrect values of the user-selected parameters that define
the behavior of the simulation models. To evaluate the intrinsic
accuracy of a simulator soundly, these values must themselves be ac-
curate. Unfortunately, selecting accurate values, or calibrating [52]
the parameters, is a non-trivial optimization problem with dimen-
sionality in the number of parameters. Thus, there is a tension
that further deepens the above challenge: increasing the level of
detail can improve simulation accuracy, but often introduces more
parameters, which makes simulation calibration more difficult [49].

To address the above challenge we propose to use automated
simulation calibration, making the following contributions:

https://doi.org/10.1145/3731599.3767698

PMBS’25, Nov. 16, 2025, St. Louis, MO

o A general, automated simulation calibration framework;

o A methodology for instantiating this framework to evaluate
the intrinsic accuracy of a simulator;

o A demonstration of the usefulness of this methodology for
two domains in which simulation is used routinely: (i) scien-
tific workflows; and (ii) message-passing applications.

The rest of the paper is organized as follows. Section 2 discusses
related work. Sections 3 and 4 detail our approach, which we eval-
uate via two case studies in Sections 5 and 6. Section 7 concludes
with a summary of results and future work.

2 Background and Related Work

Many frameworks are available for developing PDC simulators.
Some implement high levels of detail, often using Parallel Discrete
Event Simulation [28] to increase simulation scalability [10, 13, 43,
51], while others implement lower levels of detail [9, 11, 15, 37, 40,
44,53, 57]. The choice of a particular simulation framework impacts
the level of detail of the base simulation abstractions and models.
But a simulator can use these abstractions and models in arbitrary
ways. For instance, although a simulation framework may provide
ways to simulate the network topology at a high level of detail, a
simulator could opt for a low level of detail by abstracting away the
entire network as a single shared “macro” network link. In general,
a simulator can implement different levels of detail for simulating
different components of a system, somewhat independently of the
simulation framework used. Picking an appropriate level of detail
for a simulator is challenging in general [8, 18] and thus also for
simulators of PDC systems [5, 12, 24, 46, 47, 54]. In this work, we
tackle this challenge via automated simulation calibration.

The need to calibrate model parameters with respect to ground-
truth experimental data has long been recognized [52]. Calibra-
tion may seem unnecessary when simulating computer systems
since simulation parameter values should come directly from hard-
ware/software specifications. Previous research shows this not to be
the case, even when simulating at high levels of detail [27, 29, 34, 39].
The lower the level of detail, the more abstract the simulation mod-
els and their parameters, whose correct values are then complex
functions of the hardware/software specifications. To the best of our
knowledge there is no standard calibration method for simulators
of PDC systems. In [41], we have reviewed 114 research publica-
tions that include results obtained with a particular PDC simulation
framework, and found that calibration is typically not performed
nor documented. When documented, authors typically describe
labor-intensive, use case-specific, and manual procedures. In some
cases, authors use techniques such as linear regressions or gradient
descent to pick parameter values for simulated components [20, 31].

In this work we develop and use an automated simulation calibra-
tion framework. Automated calibration has been explored recently
for two specific PDC use cases [41, 42]. The goal in these previous
works is to improve the accuracy of a simulator implemented at
an already decided level of detail, and to show improvement over
manual calibration done by human experts. By contrast, this work
uses automated calibration as a means to address the challenge of
picking an appropriate level of detail.

McDonald, Wong, et al.

3 Proposed Methodology

Consider a PDC system of interest, i.e., a class of application work-
loads to execute on a class of platforms, for which ground-truth
execution data is available. Our approach consists in automatically
calibrating any simulator of this system, so that one can soundly
evaluate its intrinsic accuracy, and decide whether to implement
a new simulator at a different level of detail. This approach is
predicated on automatically solving the simulation calibration opti-
mization problem: Given a function that quantifies the discrepancy
between ground-truth and simulated executions, which we term
the loss function, and given a simulator whose behavior is defined
by various parameters, find the parameter values that minimize
the loss function. We propose a methodology for instantiating the
automated simulation calibration process as follows.

Pick parameter ranges — The constraints of the optimization
problem are user-specified ranges for the parameter values. The
more knowledge the user possesses about the target system, the
narrower these ranges and the more tractable the optimization
problem. But the user should be able to pick overly broad ranges
since knowledge about the target system is often incomplete.
Pick a loss function — A scalar metric is often used to quantify
execution performance (e.g., the execution time). A natural idea
is to define loss functions based on such metrics (e.g., the average
relative difference between real-world and simulated execution
times). With these simple metrics, it is possible for errors of different
simulation models to compensate for each other (i.e., overestimating
I/O performance while underestimating compute performance).
This is a problem because the simulator may appear correct on
the ground-truth data at hand but is in fact fundamentally flawed
and will not generalize beyond the ground-truth data. One way to
alleviate this potential problem is to employ metrics that capture
the temporal (when events happen) or physical (on which hardware
resources events happen) structure of the execution, so as to obtain
more robust calibrations.

Many loss functions can be defined, but selecting the most appro-
priate one is difficult because the values of different loss functions
are not easily comparable. Even for the best possible calibration
(i.e., the best set of simulation parameter values), different loss
functions can have different (non-zero) values. Furthermore, when
different loss functions lead to different calibrations one does not
know which one is the closest to the (unknown) best calibration. In
previous works [41, 42] loss function selection was not investigated,
and loss functions were picked based on intuition.

To resolve this difficulty we use a classical synthetic benchmark-
ing technique: we pick arbitrary simulation parameter values and
simulate executions for all application workloads and platform con-
figurations in our ground-truth data. We obtain synthetic ground-
truth data for which we know the best calibration by design. We
then perform automated calibration using this data for each loss
function, each leading to a particular calibration. We compute the
relative L1 distance between each of these calibrations and the best
calibration, and then pick the loss function that achieves the lowest
distance, which we term the calibration error.

Pick an optimization algorithm - In principle, any optimization
algorithm can be used to compute a calibration, but different algo-
rithms may have different relative effectiveness for different use

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

cases. For instance, for low-dimensionality scenarios with narrow
user-specified parameter ranges, random search has been shown to
be effective [41]. However, the choice of the algorithm is not neces-
sarily orthogonal to the choice of the loss function. Our methodol-
ogy thus consists in using the synthetic benchmarking technique
described above for each combination of loss function and optimiza-
tion algorithm, so as to select the loss/algorithm pair that achieves
the lowest calibration error.

Pick a calibration time budget — Each loss function evaluation by
the optimization algorithm entails invoking the simulator for each
ground-truth data point, which has non-zero computational cost. As
optimization is not guaranteed to converge in an acceptable amount
of time, the user may wish to allocate a fixed time or iteration
budget to the calibration process. After this budget is exceed the
best achieved calibration is simply returned. In this work we allocate
a fixed time budget to enable fair comparison of different calibration
options.

4 Implementation

We have prototyped an automated simulation calibration frame-
work as a Python package, making no assumptions regarding the,
necessarily use case-specific, simulator. It provides a Simulator
class with a run() method to be overridden for invoking the simula-
tor. It returns a loss value computed by a user-provided loss function
implementation. Our framework relies on the multiprocessing
package for parallel calibration on multiple cores. Users can define
continuous and discrete parameters to be calibrated within any
arbitrary range, using the following iterative algorithms:

Grid search (GRID) — An algorithm that performs an exhaustive
search over points in a discretized grid over the parameter space,
doubling the resolution of the discretization at each iteration.

Random search (RAND) — An algorithm that samples a random
point in the search space at each iteration.

Gradient descent (GRAD) — An algorithm that, at each iteration,
randomly samples a point in the search space and performs a gradi-
ent descent using that point as a starting point until convergence.

Bayesian Optimization (BO) — An algorithm that uses an incre-
mentally updated surrogate model for learning the relationship
between the loss function’s inputs and outputs. This model is used
to prune the search space and identify promising regions, balancing
exploration and exploitation. While the exploration samples input
configurations that can potentially improve the accuracy of the
surrogate model, the exploitation samples input configurations that
are predicted by the model to be high-performing. We use the BO
implementation in the scikit-optimize package [50], using four
possible regressors: Gaussian Process (BO-GP), Random Forest (BO-
RF), Extra Trees (BO-ET), or Gradient Boosting Quantile Regressor
Trees (BO-GBRT).

The above algorithms have been used in previous work for the
purpose of PDC simulator calibration. For instance, GRID, RAND,
and GRAD were used in [41], and BO was used in [42]. In this work
we omit results for the GRID and GRAD algorithms because they
performed poorly in preliminary experiments. We also found that
all versions of the BO algorithms perform almost identically, and
we only present results for the BO-GP algorithm.

PMBS’25, Nov. 16, 2025, St. Louis, MO

Our framework allows the user to specify a bound on the elapsed
time before a solution is returned, so that a fixed calibration time
budget can be used regardless of the algorithm. Our calibration
framework is available at [4].

5 Case Study #1: Scientific Workflows

Scientific workflows and their executions on PDC platforms have
supported some of the most significant discoveries of the past
decades [7, 21]. In this context, many researchers have used sim-
ulation to explore relevant questions (often to investigate sched-
uling and resource management strategies), which has motivated
the development of simulation framework specifically for this pur-
pose [6, 17, 56]. In this section we apply our approach to a simulator
that was designed to evaluate workflow scheduling strategies. The
implementation of the simulator and of the simulator calibrator is
available at [2].

5.1 Ground-truth Data

The ground-truth data, which is available [1], was produced using
WfCommons tools [19] to generate and execute realistic workflow
benchmarks that are based on the structures and the execution
logs of real-world workflows. Benchmarks were generated for five
different scientific applications, five different workflow sizes (i.e.,
numbers of tasks), five different amounts of per-task CPU work, and
four different total data footprint sizes (i.e., sum of the sizes of all
workflow data files). Additionally, benchmark were also generated
for two synthetic workflow patterns, a “chain” linear task graph
and a “forkjoin” fan-out/fan-in task graph, each for three different
workflow sizes, five different amounts of per-task CPU work, and
three different total data footprint sizes.

These benchmarks were executed with the Pegasus [22] (v5.0.3)
/ HTCondor [33] (v24.0) Workflow Management System (WMS) on
Chameleon Cloud [16]. Pegasus and the HTCondor Central Man-
ager were installed on a “submit node,” and n HTCondor workers
were deployed on n “worker nodes” (48-core Intel Icelake processors
running Ubuntu 22.04) on which tasks execute. Each benchmark
was executed five times for a deployment with n = 1, 2, 4, 6 workers
(except for the chain benchmark, which only uses n = 1 worker).
The workflow’s input data was initially stored on disk at the submit
node, and all workflow data was transferred (automatically by Pega-
sus) between the submit node and the worker nodes until all output
data was eventually stored on the submit node. Some benchmark
executions with high data footprint and small workflow sizes are
not available due to limits imposed on individual file sizes. In total,
execution logs were collected from 9,200 workflow executions (i.e.,
1,840 different executions, each repeated five times). Table 1 gives
more details on the ground-truth data.

5.2 Simulator Versions

Our target simulator was developed in C++ using the WRENCH
simulation framework [14]. It takes as input a workflow specifi-
cation, as a WfCommons JSON file, and a number of workers. In
practice a user would decide to implement different levels of detail
only as needed (as determined by using the methodology proposed
in this work). For the purpose of this case study, however, we have

PMBS’25, Nov. 16, 2025, St. Louis, MO

McDonald, Wong, et al.

Table 1: Workflow specifications used for ground-truth executions logs.

Workflow Application

Workflow Size (#tasks)!

Work / Task (sec.)?

Data Footprint (MB)®

Epigenomics [55] (bioinformatics)
1000Genome [55] (bioinformatics)

43, 64, 86, 129, 215
54, 81, 108, 162, 270

0.6, 1.15, 1.73, 7.22, 73.25
0.9, 1.47, 2.11, 8.02, 80.94

0, 150, 1500, 15000
0, 150, 1500, 15000

SoyKB [55] (bioinformatics) 98, 147, 196, 294, 490 0.53, 1.06, 1.6, 6.55, 74.21 0, 150, 1500, 15000
Montage [55] (astronomy) 60, 90, 120, 180, 300 0.59, 1.12, 1.75, 7.07, 73.13 0, 150, 1500, 15000
Seismology [55] (seismology) 103, 154, 206, 309, 515 0.74,1.28, 1.91, 8.34, 86.25 0, 150, 1500, 15000
Chain (synthetic) 10, 25, 50 0.83, 1.36, 1.85, 5.74, 48.94 0, 150, 1500
Forkjoin (synthetic) 10, 25, 50 0.84, 1.39, 2.05, 7.61, 70.76 0, 150, 1500

1. For each application the smallest workflow size is the smallest size that can be generated by WfCommons, and the other sizes are approximately 1.5x, 2x, 3x, and 5x larger
(WfCommons enforces constraints on workflow size to ensure that the generated task-graphs are representative of the original application).

2. Based on an execution on a single core of a worker node.

3. Given as the sum of the sizes of all the data files used by the workflow, including intermediate files.

modified the simulator so that it takes in three arguments for speci-
fying the level of detail for simulating three particular components:
(i) the network; (ii) the storage system; and (iii) the compute system.

We do not have precise information regarding the physical net-
work topology that interconnects the submit node and the workers,
besides the fact that all nodes are in the same data-center, and
perhaps in the same rack. As a result, we consider three standard
options for the network topology: (i) a single shared network link;
(ii) a star topology of dedicated network links between the submit
node and each worker; and (iii) a single shared network link out of
the submit node and then a dedicated network link to each workers.

The storage system consists of disks attached to nodes and of
services used for reading/writing workflow data on these disks.
We consider two options: (i) only the submit node has storage
capabilities; and (ii) the submit node and the workers all have
storage capabilities. In the physical platform all nodes have storage
capabilities, but it is possible that simulating storage only on the
submit node is sufficient or even more representative, performance-
wise, of what happens in practice.

The compute system consists of compute services on workers,
accessed by the WMS to execute workflow tasks. We consider two
options: (i) the WMS submits tasks directly to the workers; and
(ii) the WMS uses HTCondor to access the workers. WRENCH pro-
vides built-in abstractions for simulating HTCondor deployments.

Table 2 depicts the above options and shows the parameters to
calibrate, which lead to 2 X 2 X 3 = 12 simulator versions. The
highest level of detail for all three options leads to 10 parameters.
The simulator could take many more parameters, e.g., a different
disk bandwidth at each worker. Furthermore, the simulation models
provided by the simulation framework also come with their own
parameters. For instance, the size in bytes of each control message
exchanged between simulated components is a parameter, which
defaults to 0 bytes. Instead of considering possibly hundreds of
parameters, and to ensure that our case study is representative
of common practice in the field, we follow the typical approach:
use basic knowledge of the system on which the ground-truth
data is obtained to prune the parameter set and consider the most
likely relevant parameters. For instance, we know that the nodes
are homogeneous, and thus use the same parameter values for all
nodes; and we know that all control messages are small and that
our platform’s network has low latency and high bandwidth, thus

justifying using the default 0-byte value since control messages
have negligible impact on the execution.

5.3 Instantiating the Automated Calibration

In this section we apply the methodology in Section 3 to the simu-
lator that implements the highest level of detail, computing calibra-
tions using 48 cores of a dedicated Intel Xeon Gold 2.8GHz CPU.

5.3.1 Parameter Ranges. We use the following parameter ranges:
network and disk bandwidths are 2* bits per second and core speeds
are 2¥ ops per second for 20 < x < 40, network latencies are
between Oms and 10ms, overheads are between 0s and 20s, and the
maximum number of concurrent I/O operations at a disk is between
1 and 100. We intentionally picked very broad ranges with upper,
resp. lower, bounds between much larger, resp. smaller, than the
performance of current hardware. This is because, in practice, a user
may have very little knowledge upon which to select parameter
ranges. The best calibration is guaranteed to lie within these broad
ranges (unless the simulator is fundamentally flawed).

5.3.2 Loss Functions and Algorithms. The ground-truth data re-
ports the makespan (i.e., overall execution time) and the execution
times of each individual task. For workflow i, let m;, resp. ri;, denote
the ground-truth, resp. simulated, makespan; and let t; j, resp. fi, s
denote the ground-truth, resp. simulated, execution time of task j
in workflow i. For workflow i, let e; = |(m; — 17;) /m;| denote the
error on the makespan, and e; ; = |(t;; — #; ;)/t; ;| denote the error
on a task’s execution time. Among the many possible options for
defining a loss function we consider:

] Lg: maxi(ei)
e [,:max;(e; + anj(ei,j))
o [¢: max;(e; + max;(e;;))

o Li:avg;(e;)
o Ls:avg;(e; +avg;(e;))
o Ls:avg;(e; + max;(e;;))

These loss functions minimize average and/or maximum errors.
L7 and £, only consider the makespan error, hence do not account
for the temporal structure of the execution. L3 to Ls combine the
makespan error and the task execution time errors in various ways
that a user may employ.

As explained in Section 3, we use synthetic benchmarking to
compare the calibration error of different loss functions. Table 3
shows calibration error for different algorithm/loss combinations
(lower values are better). Overall, BO-GP outperforms RAND. Using

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

PMBS’25, Nov. 16, 2025, St. Louis, MO

Network topology simulation options

One-link topology

B: bandwidth

Star topology

B: bandwidth

One-link-plus-star topology

B: bandwidth

B’: bandwidth

Storage system simulation options

Storage service (SS) on submit node only Storage service (SS) on submit and worker nodes
N,
B,: read bandwidth
o J— : N .
N p By wite bandwidth % 5 UL B: read bandwidth
A8s) . : max # concurrent w ° B,,: write bandwidth
. . B w
]133; - disk reads/writes B; N N: max # concurrent
gr - disk reads/writes
w

Compute system simulation options

WMS accesses compute services (CS) directly

s: core speed
o: task startup overhead

@V

s, 0

WMS accesses compute services (CS) via HTCondor (HTC)

On, 0j1,0j2

s: core speed

o: task startup overhead

0,: HTCondor negotiator overhead
0j1: HTCondor job pre-overhead
0j2: HTCondor job post-overhead

Table 2: Level of detail options for the simulators used in Case Study #1.

Table 3: Calibration error vs. algorithm and loss function.

Loss
Alg, Ly L Ls Ly Ls L
RAND 541.24 | 11143 | 610.82 | 883.40 | 130.55 | 883.40
BO-GP 30.96 | 935.10 | 935.10 | 89.76 89.76 89.76

BO-GP with the £; loss function leads to the best calibration error
(even though £; is the simplest loss function). Consequently, in all
that follows, we use BO-GP with .£;.

5.3.3 Calibration Time Budget. As expected, the longer the time
budget the better the calibration and/or the better the use of a larger
training dataset. We picked a 24-hour time budget for our exper-
iments, which is sufficient for the loss function to converge. For
instance, Figure 1 shows loss vs. time for a particular workflow (sim-
ilar behavior is seen for other workflows). The loss improves rapidly
in the first two hours, and only improves marginally afterwards.

300%
£ 200%

S
—100%
50%
5m10m

1h 2h 24h

Figure 1: Loss value vs. time when using all ground-truth
data for the Epigenomics workflow.

5.4 Picking the Level of Detail

In practice a user would calibrate a simulator, decide whether a
different level of detail is more desirable, implement a new simulator,
and repeat. For the purpose of this case study we instead calibrate all
12 simulator versions. These calibrations should be computed based
on a subset of the ground-truth data (the “training dataset”) and
their simulation accuracy should be evaluated on the remaining data
(the “testing dataset”). For each workflow application, our ground-
truth data includes executions for four, resp. five, distinct numbers
of workers, resp. tasks. We define the testing dataset as the “large”
executions, i.e., all executions for the largest number of workers
and/or the largest number of workflow tasks (excluding executions
for the smallest number of workers and the smallest number of
tasks). For instance, for the 1000Genome workflow, ground-truth
executions are for 1, 2, 4, and 6 workers; and for 54, 81, 108, 162,
and 270 tasks. Our testing dataset comprises all executions on 6
workers with 81 or more tasks, and all executions with 270 tasks on
2 or more workers. In this section, we define the training dataset as
all workflow executions for the second largest number of workers
and the second largest number of tasks (e.g., for 1000Genome these
are executions for 4 workers and 162 tasks). We study the impact
of the training dataset in Section 5.5.

Figure 2 shows, for all 12 calibrated simulator versions, the
relative percentage error between simulated and ground-truth
makespans. This is the metric that most users would likely care
about (and also happens to also be the loss value in percentage).
The first observation is that simulating HTCondor is crucial. This is
because the simulated HTCondor component simulates overheads

PMBS’25, Nov. 16, 2025, St. Louis, MO

No HTCondor
—
&
X
HTCondor
—

All nodes
B Submit node only

&
S
nﬁ

20 40 60 80 100
Percent Relative Error

[l

Figure 2: Percent relative error between simulated and
ground-truth makespans (bars show averages values over
all workflows; error bars show min and max values). The
top, resp. bottom, half of the figure is for not simulating,
resp. simulating, HTCondor. Each pair or bars is for one of
the three options for simulating the network (depicted as
simplified network diagrams on the vertical axis). Each bar
in a pair is for a different option for simulating the storage
system, either on the submit node only or on all nodes.

that occur at different phases of a task’s execution. Considering
only the bottom half of the figure, we find that using a relatively
low level of detail for the network topology is sufficient. This is
because the real-world network is sufficiently provisioned to sup-
port all concurrent data transfers in the ground-truth workflow
executions. As a result, the one-link and the star topology leads to
equivalent results. Our more complex topology with a shared link
and a dedicated link in series does worse. This may seem surpris-
ing because setting the bandwidth of the shared link, resp. of the
dedicated links, to a high bandwidth effectively yields a star, resp.
one-link, topology. But this more complex topology increases the
dimensionality, and thus the difficulty, of the simulation calibration
problem without bringing any accuracy benefit (at least given our
available ground truth). Finally, we find that simulating a storage
system on all nodes brings only marginal benefit over simulating a
storage system on the submit node only. In the real-world deploy-
ment there is a storage system at all nodes. But simulating storage
only on the submit node provides a reasonable approximation, at
least in the scope of our available ground-truth data.

In the end, for this case study, our approach makes it possible
to conclude that the best accuracy is achieved when simulating
(i) HTCondor; (ii) a one-link topology; and (iii) a storage system
at all nodes. Because all considered simulators are calibrated to
the best of their ability, and can thus be compared soundly, a user
can pick the simulator that maximizes their utility. All simulators
achieve comparable simulation speed in this case study, and most
users would likely pick the most accurate simulator. This simulator
achieves error around 20% and relatively low variance across work-
flows, meaning that it can be used reliably to compare simulated
executions and draw conclusions regarding real-world systems.
One source of simulation inaccuracy is that the simulator does

McDonald, Wong, et al.

not reproduce the ground-truth task schedules exactly. To do so,
the simulator would have to implement the exact same scheduling
algorithms as that in Pegasus and HTCondor, and use the exact
same data structures, which we have not done in this case study.
To assess the value added by our proposed methodology, we
consider an approach in which one would simply use the simulator
implemented at the lowest level of detail and set all parameter
values based on available hardware specifications (i.e., documented
on the Chameleon Cloud website and/or inspected directly on the
nodes). This is likely in line with what authors do when they do not
mention calibration (e.g., as in more than 70% of the publications
reviewed in [41]). Using this approach, the average percent relative
error between simulated and ground-truth makespans ranges from
110% to 1,412% over the five workflow applications, i.e., orders of
magnitude worse than our automatically calibrated simulators.

5.5 Use of Ground-Truth Data

A simulator should be calibrated with respect to a sufficiently large
and diverse set of ground-truth executions for the computed calibra-
tion to yields low loss on the testing dataset. Obtaining ground-truth
data has a cost as it requires labor, time, and hardware resources.
Also, using more ground-truth data increases the evaluation time of
the loss function (due to a larger number of simulator invocations),
which in turn can impede the exploration of the calibration search
space. There is thus an incentive to compute calibrations based
on only a few and/or small-scale executions. The risk is to overfit
to these executions, obtaining a calibration that is “correct for the
wrong reasons” and thus non-generalizable to other executions.
In the previous section, the training dataset is the executions
with the second largest number of workers and number of tasks. In
this section we consider other options using two different schemes:
(i) “single-sample” training based on executions for a single number
of workers (n) and a single number of tasks (m); and (ii) “rectangular-
sample” training based on executions for all numbers of workers < n
and for all numbers of tasks < m. Given our available ground-truth
data, for a given workflow this yields 27 different options for the
training dataset. Obtaining the ground-truth data for each of these
options has a resource cost, with higher cost for more workflow
executions, more workers, and/or longer workflow executions. We
measure the cost of obtaining the ground-truth data for a particular
training dataset as the sum, over all included workflow executions,
of the number of workers multiplied by the makespan, in seconds.
Figure 3 shows results as a scatter plot where the horizontal
axis is the achieved loss and the vertical axis is the cost of ob-
taining the training data, for all workflows. Although the training
datasets used in the previous section were not the best choices,
they achieve relatively low loss at relatively low cost. An inter-
esting observation from these results is that using larger training
datasets (in the number of data points, as in the rectangular-sample
scheme, or in the scale of the executions for these data points) can
be detrimental. This may seem counter-intuitive, but is explained
as follows. A simulation for a single number of workers and single
number of tasks does exert all components of the simulated sys-
tems with many simulated task executions, data transfers, and I/O
operations. The executions for other numbers of workers and/or
tasks are not necessarily qualitatively different, in which case there

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

~10°
% » Epigenomics
b o o g 1000Genomes
2 g o o
By g ﬂ o o Bo » Montage g
] 10 = g B g i o > Seismology . T
©
5 | gt x &8t > SoyKs b
E x° { ot e “ °® o °
©10° o ® = s . o
£~ L]
o ° [:
£ $ ¢ e
£ °® o |o $o H
©
£ 10 ¢.é 89, -
s * e $o2 .
o . ® e °
S 0 .
[SET

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Loss

Figure 3: Training dataset cost vs. loss, for each workflow.
For each workflow, data points are shown for the single-
sample scheme as filled circles and for the rectangular-
sample scheme as unfilled squares. Crosses indicate the train-
ing datasets used in the previous section.

is little new behavior to learn. Including these executions leads to
an unnecessarily large training dataset. This is detrimental because
the loss function evaluation involves simulating the execution of
all workflows in the training dataset. For a given time budget, the
optimization algorithm will thus perform fewer iterations and may
produce a worse calibration. Another observation is that using the
cheapest (running the smallest workflow configuration on a sin-
gle worker), and thus necessarily least diverse, training datasets
is a poor choice. Save for the SoyKB workflow, the cheapest train-
ing dataset for each workflow in Figure 3 is among the ones with
the highest loss. We conclude that, for this case study, a training
dataset with executions for a single number of workers > 1 and
single number of tasks is sufficient.

A way to further reduce the training dataset cost is to, for each
worker count and task count, execute fewer workflow configura-
tions. As seen in Table 1, our ground-truth data spans a range of
sequential work and data footprint values. We computed calibra-
tions using only executions for one sequential work value and one
data footprint value. In more than 98% of the cases the resulting
loss on the testing dataset becomes significantly larger, sometimes
up to an order of magnitude. Expectedly, the worst results are when
the training dataset only includes executions with zero sequential
work and/or zero data footprint, meaning that some components
of the system are never simulated. We conclude that the training
dataset must include executions with diverse data to compute vol-
ume ratios. Otherwise, calibrations are overfit to a single such ratio
and thus non-generalizable.

Yet another way to reduce the training dataset cost is to employ
simple benchmarks, such as the chain or forkjoin workflows de-
scribed in Section 5.1. We computed calibrations with a training
dataset that contains only chain executions, forkjoin executions, or
both. The ground-truth data for real-world workflows is used as
the testing dataset. Using only chain executions increases the loss
by more than one order of magnitude due to the training dataset
not including any parallel task executions. Using only forkjoin ex-
ecutions leads to loss increases between 1.2x and 3.5x depending
on the workflow. Computing calibrations based on both chain and
forkjoin executions leads to worse results, due to the loss function

PMBS’25, Nov. 16, 2025, St. Louis, MO

evaluation being more costly. Overall, the use of simple benchmark
ground-truth data for calibrating simulations of real-world appli-
cations is attractive but has a non-negligible negative impact on
accuracy, at least in the scope of this case study.

6 Case Study #2: Message Passing Applications

Many researchers have used simulation to investigate the perfor-
mance of MPI (Message Passing Interface) applications, relying on
one of the many simulation frameworks developed for this pur-
pose [10, 23, 26, 32, 36, 43]. In this section we apply our approach
to a simulator that was developed to investigate MPI performance
on a particular HPC cluster. The implementation of the simulator
and of the simulator calibrator is available at [3].

6.1 Ground-truth Data

The ground-truth data, which is available at [1], is from runs of the
Intel MPI Benchmarks (IMB) [35] on the pre-exascale Summit lead-
ership class supercomputer at the Oak Ridge National Laboratory.
The IMB measures the performance of various MPI point-to-point
communication functions and patterns for ranges of message sizes.
Specifically, the collected ground-truth data consists of execution
logs of the PingPing, PingPong, BiRandom, and Stencil IMB bench-
marks with 2¥-byte messages, for x € {10,11,..., 22}, on 128, 256,
and 512 compute nodes.

Summit is an IBM system with ~4,600 compute nodes, each
equipped with two IBM POWERSY processors, for a total of 42 CPU
cores, and with six NVIDIA Tesla V100 GPUs. Summit’s intercon-
nect uses a non-blocking three-level Fat-Tree topology: Level one
switches connect 18 nodes in each cabinet along with 18 director
switches comprising 36 level two and 18 level three switches to con-
nect cabinets together. On platforms like Summit, the bulk of the
performance comes from the use of the multiple GPUs at each node.
The usage of CPUs is often limited to the control of the execution
flow of the application, to send and retrieve data to and from GPUs,
and to manage inter-node data exchanges using MPI. On Summit,
with six GPUs per node, often only six out the 42 available CPU
cores are used. The ground-truth executions match this practice by
running the IMB with six MPI ranks per node.

6.2 Simulator Versions

Our simulator uses SMPI [23], which makes it possible to compile
and simulate unmodified MPI programs. SMPI takes as input a
specification of a simulated hardware platform and executes the
MPI application code as is, with each MPI rank executing as a
thread. Each MPI call is intercepted and its duration is simulated,
while each block of code between two calls is timed to simulate
computation delays. The simulator takes in three arguments for
specifying the level of detail for the simulation of three particular
components: (i) the network; (ii) the compute nodes; and (iii) the
adaptive communication protocol.

We consider four options for simulating the network topology:
(i) a single shared backbone link; (ii) a single shared backbone
link and dedicated links to each compute nodes; (iii) a 4-ary tree
network; and (iv) a fat tree topology with several layers of switches,
which corresponds to the network topology used on Summit.

PMBS’25, Nov. 16, 2025, St. Louis, MO

We consider two options for simulating the compute nodes:
(i) a multi-core node with NIC, which abstracts away architectural
details; and (ii) a two-socket node where the sockets communicate
via an X-Bus SMP bus, and are each connected to the NIC via a
PClIe bus, which is closer to the real architecture.

MPI implementations use different communication protocols for
different message sizes for performance reasons (e.g., switching
from eager to rendez-vous mode), which can be modeled as a mul-
tiplicative factor applied to data transfer rates [23]. Results in [23]
indicate two such message sizes, or change points. We consider two
options for simulating this adaptive protocol: (i) protocol changes
occur at two known change points (experiments can be conducted
to determine the change points empirically), leading to three band-
width factors to calibrate; and (ii) the same model but where the
two change points are unknown and must thus be calibrated (which
removes the need to conduct extra experiments but increases the
dimensionality of the calibration problem).

Table 4 depicts the above options and shows the parameters to
calibrate, which lead to 4 X 2 X 2 = 16 simulator versions.

6.3 Instantiating the Automated Calibration

In this section we apply the methodology in Section 3 to the simu-
lator that implements the highest level of detail, computing calibra-
tions on 48 cores of a dedicated Intel Xeon Gold 2.8GHz CPU.

6.3.1 Parameter Ranges. We use broad parameter ranges: for all
bandwidth, latencies, and compute speeds, we use min, resp. max,
values that are at least one order of magnitude lower, resp. higher,
than the actual hardware specification of Summit.

6.3.2 Loss Functions and Algorithms. For each benchmark and for
a given message size, our ground-truth data consists of data transfer
rate measurements, or samples, for multiple repeated executions.
Due to platform noise, there is variance in these samples. Our simu-
lator, instead, produces a single data transfer rate value since SMPI
simulations are deterministic and repeatable by design. We need
to quantify how representative this simulated value is of the set of
measured samples. To do so we use the explained variance, which is
defined as a/b, where a is the L1 distance between the samples and
the model value, and b is the L1 distance between the measured
samples and their mean. The lower (i.e., closer to 1) the explained
variance, the more closely the simulated value matches the mea-
sured sample. Let ev; ; denote the explained variance between the
ground-truth data transfer rates and the simulated data transfer
rate for benchmark i executed with message size j. We consider
four loss functions defined based on the explained variance:

o Ly:avg, (avg, (ev;)

o L3 max;(avg;(es;))

o L;: avg;(max;(ev; ;)
e Ly max;(max;(e;;))

Table 5 shows the calibration error, computed using the synthetic
benchmarking technique in Section 3. Results are shown for each
combination of algorithm and loss function, when computing (and
evaluating) calibrations using all generated synthetic ground-truth
data for the PingPing, PingPong, and BiRandom benchmarks. Note
that this error measure may be misleading due to the bandwidth
factors used to simulate the adaptive message-passing protocol:
calibrations that differ only in bandwidths and multiplicative band-
width factors can produce the same simulated execution. That is,

McDonald, Wong, et al.

simulating a link with bandwidth B with multiplicative factor « is
the same as simulating a link with bandwidth B with multiplica-
tive factor 1. For this reason, Table 5 also shows the relative absolute
error between real-world and simulated transfer rates, averaged
over all benchmarks and data sizes. Overall, the best combination,
which we use in all that follows, is the BO-GP algorithm with the
L loss function. This is similar to our finding in the previous case
study (i.e., use Bayesian Optimization with a simple loss function).

n 400%
u}
o
—300%
AN

200%
10m 1h 2h 5h 10h 48h

Figure 4: Loss value vs. time when using all ground-truth
data for 128 compute nodes.

6.3.3 Calibration Time Budget. We use a 48-hour time budget,
which is sufficient for the loss value to converge, as seen in the
example in Figure 4.

6.4 Picking the Level of Detail

In this section we compare the accuracy of all 16 simulators, each
calibrated using the method instantiated in the previous section. As
noted in the previous case study, in practice a user would instead
incrementally implement, calibrate, and evaluate simulators. We

Simple compute node
[—] EE— 2000 0

Complex compute node

B Fixed change points
§=€ = Arbitrary change points

0 5 10 15 20 25 30 35
Percent Relative Error

Figure 5: Percent relative error between simulated and
ground-truth data transfer rates (bars show average values
over all benchmarks; error bars show min and max values).
The top, resp. bottom, half of the figure is for simulating a
simple, resp. complex, compute node. Each pair of bars is for
one of the four options for simulating the network topology
(depicted as simplified network diagrams on the vertical axis).
Each bar in a pair is for a different option for simulating the
adaptive MPI protocol, with either fixed or arbitrary change
points.

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

PMBS’25, Nov. 16, 2025, St. Louis, MO

Network topology simulation options

Single backbone | Single backbone with node links

B: bandwidth
I: latency

B’: bandwidth
I’: latency

B: bandwidth
I: latency

4-ary tree of switches

bandwidth
limiters

B: bandwidth
I: latency
B’: bandwidth

B:bandwidth | B L]
I: latency

Compute node simulation options

Complex node

s: core speed

| I I: latency
a a B': bandwidth
I’: latency

s: core speed
B: bandwidth

Adaptive protocol simulation options

Two fixed change points

By

By: bandwidth factor
B, B,: bandwidth factor
— B; - B;: bandwidth factor

transfer rate

16kB 128kB msg size

Two arbitrary change points

B, By: bandwidth factor
B,: bandwidth factor

B, Bs: bandwidth factor

Bs X1: message size

Xy: message size

transfer rate

T T

X1 X2 msg size

Table 4: Level of detail options for the simulators users in the case study in Section 6.

Table 5: Calibration error and average relative transfer rate
error vs. loss function.

Metric I £] £ | £] L
RAND
Calibration error 60.96 | 58.17 | 43.80 | 70.74

Rel. avg. transfer rate error || 0.05 0.10 0.09 | 0.22

BO-GP
Calibration error 1.87 | 126.65 | 31.58 | 47.11
Rel. avg. transfer rate error || 0.03 0.12 0.11 | 0.17

present overfitting results, i.e., both the training and the testing
datasets consist of 128-node ground-truth executions for PingPing,
PingPong, and BiRandom. We study the impact of the training
dataset in Section 6.5.

Figure 5 shows relative percentage error between simulated and
ground-truth data transfer rates. This is an easier accuracy metric to
interpret than the loss value, and what most users would measure.
The first observation is that all simulators exhibit relatively similar
results, more so than in the previous case study, with average rela-
tive errors between 13% and 24%. Simulating complex, rather than
simple, compute nodes is better in most cases. The one exception is

when simulating simple compute nodes and a backbone topology
with individual links (i.e., the second pair of bars in the top half of
the figure). This particular case happens to lead to average error as
low as the best simulator that simulates complex compute nodes
(but a higher variance). In terms of MPI protocol simulation, the
differences are small in terms of averages. But using fixed, rather
than arbitrary, change points, leads to lower variance in most cases.
The increase in the level of detail due to non-fixed change points
is not worthwhile, at least given our calibration time budget. Fi-
nally, we see that the best results are achieved when simulating a
backbone topology with individual links, which seems to strike a
good compromise between calibration dimensionality and potential
accuracy. Simulating the network at a higher level of detail, using
a 4-ary tree or a fat-tree topology, leads to worse results in terms
of average and/or variance.

The best accuracy is achieved when simulating (i) a backbone
with individual links and (ii) an adaptive MPI protocol with fixed
change points. In these conditions, simulating a complex compute
node brings almost no benefit compare to simulating a simple com-
pute node. Like in the previous case study, all simulators achieve
similar simulation speed. Given the results in Figure 5, a user would
most likely opt for simulating a simple compute node, since it is
sufficient to achieve good results an requires less simulator code.

PMBS’25, Nov. 16, 2025, St. Louis, MO

The most accurate simulators achieve errors below 15%, with
relatively low variance across all benchmarks. As in the previous
case study, we have performed a straightforward calibration that a
user may do based on Summit’s specifications, using the simulator
implemented at the lowest level of detail. The average percent
relative error between simulated and ground-truth data transfer
rates ranges from 91% to 97% over the three benchmarks.

6.5 Use of Ground-truth Data

As in the previous case study, we explore the impact of using dif-
ferent training datasets for computing calibrations, to determine
the extent to which a calibrated simulator produces results that
generalizes beyond the ground-truth data. We consider generaliza-
tion to (i) different benchmark types and (ii) different execution
scales, using the simulator that implements the highest level of
detail. First, we simulate the 128-node execution of the Stencil ap-
plication benchmark using a calibration computed based on the
128-node executions of the BiRandom, PingPing, and PingPong
benchmarks. We find that simulated execution achieves a relative
error (averaged over all message sizes) of 58.8%. By contrast, using
a calibration based on the Stencil ground-truth data, the error be-
comes 28.6%. Second, we simulate the 256- and 512-node execution
of each benchmark using a calibration computed based on their
128-node executions. We observe significant increases in simulation
error for all benchmarks. For instance, for the BiRandom bench-
mark, while error averaged over all message sizes is 15.2% when
simulating 128-node executions, when simulating 256- and 512-
node executions the error becomes 30.8% and 59.4%, respectively.

These results show that the calibrated simulator does not gen-
eralize well beyond the ground-truth data. It may still be useful
for some purposes (e.g., studying the impact of the network link
bandwidth on particular benchmark executions at particular scales).
But overall, this is a negative result for this simulator: it cannot
fulfill its intended purpose of studying MPI performance scaling for
the target HPC cluster, even for simple point-to-point communica-
tions. Perhaps the simulator does not implement a sufficiently high
level of detail. But we actually suspect that information on how the
ground-truth data was obtained is incomplete and/or inaccurate,
leading to the simulated executions to qualitatively differ from the
ground-truth executions. Regardless, as far as this work is con-
cerned, this is positive result for our methodology: automatically
calibrating the simulator to the best of its ability with respect to
the available ground-truth data makes it possible to systematically
evaluate its intrinsic accuracy, and to reach the above (negative)
result.

7 Conclusion

Evaluating the intrinsic accuracy of simulators of PDC systems
requires that these simulators be well-calibrated. Because simula-
tion calibration is labor-intensive, it must be automated. We have
proposed a methodology for instantiating the simulation calibra-
tion process and a framework for automating this process. This
approach is general and makes it possible to make rational deci-
sions and draw rational conclusions when implementing and/or
evaluating a simulator. We have demonstrated its usefulness via

McDonald, Wong, et al.

two case studies representative of current simulation-driven re-
search. Our first case study demonstrates how our approach allows
a designer to pick an appropriate level of detail for each simulated
component. Our second case study shows how our approach makes
it possible to quantify the accuracy limits of a given set of simulator
implementations calibrated based on available ground-truth data.

Conclusions regarding the most appropriate level of detail may
be use case-specific. However, many researchers use simulation
to study similar scenarios, often using the same simulation frame-
works or simulators (e.g., batch-scheduling using Alea [38] or Bat-
sim [25] and data from the Parallel Workload Archive [45], sci-
entific workflows using WRENCH [14] with execution logs from
WfCommons [19], or cloud computing using CloudSim [11] with
ground-truth data from Google [30]). We thus expect some conclu-
sions to generalize across related use cases within the same PDC
domain. In future work, we will perform other case studies to verify
this expectation, with a broader range of considered simulation
frameworks. The ultimate goal for our approach, and its implemen-
tation, is not only to improve simulation-driven research, but also
to give rise to guidelines regarding which simulation level of detail
should be used in particular PDC domains.

Acknowledgments

This research was partially supported by National Science Foun-
dation awards #2106059, #2411154, and #2106147. The technical
support and advanced computing resources from University of
Hawaii Information Technology Services Research Cyberinfras-
tructure, funded in part by the National Science Foundation CC*
awards #2201428 and #2232862 are gratefully acknowledged. Fi-
nally, this research used resources of the OLCF at ORNL, which
is supported by DOE’s Office of Science under Contract No. DE-
AC05-000R22725. This work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. This material
is based on work partially supported by LLNL LDRD 22-SI-004
(LLNL-CONF-2002494).

References

[1] 2025. Ground-Truth Data for the Case Studies. https://doi.org/10.6084/m9.
figshare.30132955

[2] 2025. Simulator and Calibrator for Case Study #1. https://github.com/wrench-

project/pmbs2025_calibration_casestudy1_reproducibility.

2025. Simulator and Calibrator for Case Study #2. https://github.com/wrench-

project/pmbs2025_calibration_casestudy?2_reproducibility.

2025. The Simcal Calibration Framework. https://github.com/wrench-project/

simcal.

[5] Jung Ho Ahn, Sheng Li, Seongil O, and Norman Jouppi. 2013. McSimA+: A
Manycore Simulator with Application-Level+ Simulation and Detailed Microar-
chitecture Modeling. In Proc. of the IEEE Int. Symp. on Performance Analysis of
Systems and Software. 74-85.

[6] A.Al-Haboobi and G. Kecskemeti. 2023. Developing a Workflow Management
System Simulation for Capturing Internal IaaS Behavioural Knowledge. Journal
of Grid Computing 21, 2 (2023).

[7] Malcolm Atkinson, Sandra Gesing, Johan Montagnat, and Ian Taylor. 2017. Sci-
entific Workflows: Past, Present and Future. Future Generation Computer Systems
75 (2017), 216-227.

[8] Peraketh Benjamin, Madhav Erraguntla, Dursun Delen, and Richard Mayer. 1998.
Simulation Modeling at multiple Levels of Abstraction. In Proc. of the Winter
Simulation Conf., Vol. 1. 391-398.

[9] Rajkumar Buyya and Manzur Murshed. 2002. GridSim: A Toolkit for the Modeling
and Simulation of Distributed Resource Management and Scheduling for Grid
Computing. Concurrency and Computation: Practice and Experience 14, 13-15
(2002), 1175-1220.

3

[4

https://doi.org/10.6084/m9.figshare.30132955
https://doi.org/10.6084/m9.figshare.30132955
https://github.com/wrench-project/pmbs2025_calibration_casestudy1_reproducibility
https://github.com/wrench-project/pmbs2025_calibration_casestudy1_reproducibility
https://github.com/wrench-project/pmbs2025_calibration_casestudy2_reproducibility
https://github.com/wrench-project/pmbs2025_calibration_casestudy2_reproducibility
https://github.com/wrench-project/simcal
https://github.com/wrench-project/simcal

Picking Levels of Detail for Simulators of PDC Systems via Automated Calibration

[10] Swen Bohm and Christian Engelmann. 2011. xSim: The extreme-scale simulator.
In Proc. of the Int. Conf. on High Performance Computing and Simulation. 280-286.

[11] Rodrigo Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar De Rose, and Rajku-
mar Buyya. 2011. CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algorithms.

Software: Practice and Experience 41, 1 (2011), 23-50.

[12] Trevor Carlson, Wim Heirman, and Lieven Eeckhout. 2011. Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-Core Simulation. In
Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and

Analysis. 1-12.
[13] Chris Carothers, David Bauer, and Shawn Pearce. 2002.

Comput. 62, 11 (2002), 1648-1669.
[14

with WRENCH. Future Generation Computer Systems 112 (2020), 162-175.

[15] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and Frédéric
Suter. 2025. Lowering entry barriers to developing custom simulators of dis-
tributed applications and platforms with SimGrid. Parallel Comput. 123 (2025).

[16] Chameleon 2025. Chameleon Cloud. https://www.chameleoncloud.org.

[17] W. Chen and E. Deelman. 2012. WorkflowSim: A Toolkit for Simulating Scientific
Workflows in Distributed Environments. In Proc. of the 8th IEEE Intl. Conf. on

E-Science. 1-8.
[18

128 (2022), 16-27.

[20] T. Cornebize. 2021. High Performance Computing: Towards Better Performance Pre-
dictions and Experiments. Ph. D. Dissertation. Grenoble INP ; Université Grenoble

- Alpes.

[21] Ewa Deelman, Rafael Ferreira da Silva, Karan Vahi, Mats Rynge, Rajiv Mayani,
Ryan Tanaka, Wendy Whitcup, and Miron Livny. 2021. The Pegasus workflow
management system: Translational computer science in practice. Journal of

Computational Science 52 (2021).

[22] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science

Automation. Future Generation Computer Systems 46 (2015), 17-35.

~
&

Technology 5, 2 (2011), 221-257.
[25

Parallel Processing.

[26] C.Engelmann. 2014. Scaling To A Million Cores And Beyond: Using Light-Weight
Simulation to Understand The Challenges Ahead On The Road To Exascale. Future

Generation Computer Systems 30 (2014), 59-65.

[27] Gilberto Flores, Marcos Paredes-Farrera, Emmanuel Jammeh, Martin Fleury, and
Martin Reed. 2003. OPNET Modeler and Ns-2: Comparing the Accuracy of
Network Simulators for Packet-Level Analysis Using a Network Testbed. WSEAS

Trans. on Computers 2, 3 (2003).

[28] Richard Fujimoto. 1990. Parallel Discrete Event Simulation. Commun. ACM 33,

10 (1990), 30-53.
[29

Networks and Systems & Workshops. 1-10.

[30] Google Workload Traces 2025. Google Workload Traces. https://github.com/

google/cluster-data.
[31

(CCGrid). 196-205. https://doi.org/10.1109/CCGrid51090.2021.00029

)
&

Workshop on Large-Scale System and Application Performance. 597-604.
[33] HTCondor 2023. The HTCondor Software Suite. https://htcondor.org.
[34

ROSS: A High-
Performance, Low Memory, Modular Time Warp System. J. Parallel and Distrib.

Henri Casanova, Rafael Ferreira da Silva, Ryan Tanaka, Suraj Pandey, Gautam
Jethwani, Spencer Albrecht, James Oeth, and Frédéric Suter. 2020. Developing
Accurate and Scalable Simulators of Production Workflow Management Systems

Leonardo Chwif, Marcos Ribeiro Pereira Barretto, and Ray Paul. 2000. On Simu-
lation Model Complexity. In Proc. of the Winter Simulation Conf,, Vol. 1. 449-455.

[19] Taina Coleman, Henri Casanova, Loic Pottier, Manav Kaushik, Ewa Deelman,
and Rafael Ferreira da Silva. 2022. WfCommons: A Framework for Enabling
Scientific Workflow Research and Development. Future Generation Comp. Sys.

Augustin Degomme, Arnaud Legrand, George Markomanolis, Martin Quinson,
Mark Stillwell, and Frédéric Suter. 2017. Simulating MPI applications: the SMPI
approach. IEEE Trans. on Parallel and Distributed Systems 18, 8 (2017), 2387-2400.

[24] Ciprian Dobre, Florin Pop, and Valentin Cristea. 2011. New Trends in Large
Scale Distributed Systems Simulation. Journal of Algorithms & Computational

Pierre-Francois Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
2016. Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator. In Proc. of the 20th Workshop on Job Scheduling Strategies for

Pablo Garrido, Manuel Malumbres, and Carlos Calafate. 2008. Ns-2 vs. OPNET: A
Comparative Study of the IEEE 802.11e Technology on MANET Environments. In
Proc. of the 1st Int. Conf. on Simulation Tools and Techniques for Communications,

Adrian Herrera, Mario Ibanez, Esteban Stafford, and Jose Luis Bosque. 2021. A
Simulator for Intelligent Workload Managers in Heterogeneous Clusters. In Proc.
IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing

Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. 2010. LogGOPSim -
Simulating Large-Scale Applications in the LogGOPS Model. In Proc. of the ACM

Philipp Hurni and Torsten Braun. 2009. Calibrating Wireless Sensor Network
Simulation Models with Real-World Experiments. In Proc. of the 8th Int. IFIP-TC 6
Networking Conf. (Lecture Notes in Computer Science, Vol. 5550). Springer, 1-13.

(35]

[36]

(37]

[38

[40

[41

[42]

[43

[44

[45

[46

N
=

(48

[49

[50

[51]

[52

[53

PMBS’25, Nov. 16, 2025, St. Louis, MO

IMB 2021. Intel MPI Benchmarks User Guide. https://www.intel.com/content/
www/us/en/docs/mpi-library/user-guide-benchmarks/2021-8/overview.html.
C. L. Janssen, H. Adalsteinsson, S. Cranford, J. P. Kenny, A. Pinar, D. A. Evensky,
and J. Mayo. 2010. A simulator for large-scale parallel architectures. International
Journal of Parallel and Distributed Systems 1, 2 (2010), 57-73.

Gabor Kecskemeti. 2015. DISSECT-CF: A Simulator to Foster Energy-Aware
Scheduling in Infrastructure Clouds. Simulation Modelling Practice and Theory
58 (2015), 188-218.

Dalibor Klusacek, Mehmet Soysal, and Frédéric Suter. 2019. Alea - Complex Job
Scheduling Simulator. In Proc. of the 13th Int. Conf. on Parallel Processing and
Applied Mathematics (Lecture Notes in Computer Science, Vol. 12044). 217 — 229.
Johannes Lessmann, Peter Janacik, Lazar Lachev, and Dalimir Orfanus. 2008.
Comparative Study of Wireless Network Simulators. In Proc of the 7th Int. Conf.
on Networking. 517-523.

Fabian Mastenbroek, Georgios Andreadis, Soufiane Jounaid, Wenchen Lai, Jacob
Burley, Jaro Bosch, Erwin van Eyk, Laurens Versluis, Vincent van Beek, and
Alexandru Iosup. 2021. OpenDC 2.0: Convenient Modeling and Simulation of
Emerging Technologies in Cloud Datacenters. In Proc. of the 21st IEEE/ACM Int.
Symp. on Cluster, Cloud and Internet Computing. 455-464.

Jesse McDonald, Maximilian Horzela, Frédéric Suter, and Henri Casanova. 2024.
Automated Calibration of Parallel and Distributed Computing Simulators: A Case
Study. In Proc. of the 25th IEEE Int. Workshop on Parallel and Distributed Scientific
and Engineering Computing. 1026-1035.

Julien Monniot, Francois Tessier, Henri Casanova, and Gabriel Antoniu. 2024.
Simulation of Large-Scale HPC Storage Systems: Challenges and Methodologies.
In Proc. of the 31st IEEE Int. Conf. on High Performance Computing, Data, and
Analytics. 1-11.

Misbah Mubarak, Christopher Carothers, Robert Ross, and Philip Carns. 2017.
Enabling Parallel Simulation of Large-Scale HPC Network Systems. IEEE Trans.
on Parallel and Distributed Systems 28, 1 (2017), 87-100.

Simon Ostermann, Kassian Plankensteiner, Radu Prodan, and Thomas Fahringer.
2010. GroudSim: An Event-Based Simulation Framework for Computational
Grids and Clouds. In Proc. of the Euro-Par Parallel Processing Workshops. 305-313.
Parallel Workloads Archive 2025. Parallel Workloads Archive. https://www.cs.
huji.ac.il/labs/parallel/workload.

Alejandro Rico, Felipe Cabarcas, Carlos Villavieja, Milan Pavlovic, Augusto Vega,
Yoav Etsion, Alex Ramirez, and Mateo Valero. 2012. On the Simulation of Large-
Scale Architectures Using Multiple Application Abstraction Levels. ACM Trans.
on Architecture and Code Optimization 8, 4 (2012), 1-20.

Sashko Ristov, Mika Hautz, Christian Hollaus, and Radu Prodan. 2022. SimLess:
Simulate Serverless Workflows and Their Twins and Siblings in Federated FaaS.
In Proc. of the 13th Symp. on Cloud Computing. 323-339.

Stewart Robinson. 2011. Choosing the Right Model: Conceptual Modeling for
Simulation. In Proc. of the Winter Simulation Conf. 1423-1435.

Stewart Robinson and Roger Brooks. 2024. Assumptions and simplifications in
discrete-event simulation modelling. Journal of Simulation (2024), 1-18.
scikit-optimize 2025. scikit-optimize: Sequential model-based optimization in
Python. https://scikit-optimize.github.io/stable/.

SST-Macro 2024. SST/macro 14.1: User’s Manual. https://raw.githubusercontent.
com/sstsimulator/sst-macro/refs/heads/master/manual- sstmacro-14.1.pdf.
Chih-Li Sung and Rui Tuo. 2024. A Review on Computer Model Calibration.
WIREs Computational Statistics 16, 1 (2024), e1645.

Michael Tighe, Gaston Keller, Michael Bauer, and Hanan Lutfiyya. 2012. DCSim:
A Data Centre Simulation Tool for Evaluating Dynamic Virtualized Resource
Management. In Proc. of the Workshop on Systems Virtualization Management.
385-392.

Irfan Uddin. 2015. Multiple Levels of Abstraction in the Simulation of Mi-
crothreaded Many-Core Architectures. Open Journal of Modelling and Simulation
3 (2015), 159-190.

Wf{Commons 2025. The WfCommons Project. https://wfcommons.org.

wrench [n. d.]. WRENCH: Workflow Management System Simulation Workbench.
http://wrench-project.org.

Urooj Yousuf Khan, Tariq Rahim Soomro, and Muhammad Nawaz Brohi. 2022.
iFogSim: A Tool for Simulating Cloud and Fog Applications. In Proc. of the Int.
Conf. on Cyber Resilience. 01-05.

https://www.chameleoncloud.org
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://doi.org/10.1109/CCGrid51090.2021.00029
https://htcondor.org
https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-8/overview.html
https://www.intel.com/content/www/us/en/docs/mpi-library/user-guide-benchmarks/2021-8/overview.html
https://www.cs.huji.ac.il/labs/parallel/workload
https://www.cs.huji.ac.il/labs/parallel/workload
https://scikit-optimize.github.io/stable/
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://wfcommons.org
http://wrench-project.org

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Proposed Methodology
	4 Implementation
	5 Case Study #1: Scientific Workflows
	5.1 Ground-truth Data
	5.2 Simulator Versions
	5.3 Instantiating the Automated Calibration
	5.4 Picking the Level of Detail
	5.5 Use of Ground-Truth Data

	6 Case Study #2: Message Passing Applications
	6.1 Ground-truth Data
	6.2 Simulator Versions
	6.3 Instantiating the Automated Calibration
	6.4 Picking the Level of Detail
	6.5 Use of Ground-truth Data

	7 Conclusion
	References

