A Versatile Simulated Data Transport Layer
for In Situ Workflows Performance Evaluation

Frédéric Suter
Oak Ridge National Laboratory, Oak Ridge, TN, USA
suterf@ornl.gov

Abstract—In situ processing does not only allow scientific
applications to face the explosion in data volume and velocity but
also to address the time constraints of many simulation-analysis
workflows by providing scientists with early insights about their
applications at runtime. Multiple frameworks implement the
concept of a data transport layer (DTL) to enable such in situ
workflows. These tools are very versatile, directly or indirectly
access the data generated on the same node, another node of the
same compute cluster, or a completely distinct node, and allow
data publishers and subscribers to run on the same computing
resources or not. This versatility puts on researchers the onus
of taking key decisions related to resource allocation and how to
transport data to ensure the most efficient execution of their
in situ workflows. However, domain scientists and workflow
practitioners lack the appropriate tools to assess the respective
performance of particular design and deployment options.

In this paper we introduce a versatile simulated DTL designed
to provide researchers with insights on the respective perfor-
mance of different execution scenarios of in situ workflows. This
open-source, standalone library builds on the SimGrid toolkit
and can be linked to any SimGrid-based simulator. It facilitates
the evaluation of the performance behavior, at scale, of different
data transport configurations and the study of the effects of
resource allocation strategies. We demonstrate the scalability,
versatility, and accuracy of this simulated DTL by reproducing
the execution of two synthetic benchmarks and of a real-world
in situ workflow composed of an MPI application and a parallel
data analysis. Results of simulations run on a single core show
that the proposed library can simulate the interactions of tens of
thousands of simulated processes deployed on two interconnected
commodity clusters in a few seconds, and the execution by a
thousand simulated processes of an in situ workflow in less than
three minutes.

I. INTRODUCTION

In situ processing [1], originally defined as the capacity to
analyze or visualize data as it is generated by scientific applica-
tions or instruments, is an alternative to the post hoc processing
paradigm, in which analyses are performed only after an entire
dataset has been produced. In situ processing allow applica-
tions in various scientific domains such as cosmology, nuclear
engineering, climate modeling, or biology [2]-[5], to manage
the explosion in data volume and velocity combined to the

This manuscript has been authored in part by UT-Battelle, LLC, under
contract DE-AC05-000R22725 with the US Department of Energy (DOE).
The publisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a non-exclusive, paid up, irrevocable, world-
wide license to publish or reproduce the published form of the manuscript, or
allow others to do so, for U.S. Government purposes. The DOE will provide
public access to these results in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

growing discrepancy between storage subsystems performance
and computing power in extreme-scale supercomputers. It also
addresses the time constraints of many simulation-analysis
workflows [6] by providing researchers with early insights
about the evolution of their applications at runtime, offering
them additional command-and-control capacities (e.g., early
termination, exploration of new parameters, additional analy-
ses), and eventually reducing the time to science results.

The term “in situ” has evolved over the last decade to
become an umbrella term covering approaches well beyond its
initial definition. In situ workflows now facilitate data reduc-
tion, annotation, and transformation at different stages of their
execution and heavily rely on an efficient data management
layer to transparently optimize data operations [7].

This evolution led the in situ processing community to
capture the different meanings of the “in situ” term in a
comprehensive terminology [8]. This terminology defines a
data transport layer (DTL) as an application-aware, multi-
purpose interface system integrated with an application, that
can directly or indirectly access data on the same node, another
node of the same compute cluster, or a completely distinct
node, and allow data publishers and subscribers to run on the
same computing resources or not.

This complex and versatile definition of a DTL highlights a
common challenge faced by users of the multiple frameworks
that implement this definition [9]-[13]. They usually must
determine how many resources to allocate to the components
of an in situ workflow, where to allocate them, and how
to transport data from one component to another. These
decisions are key to efficient executions. However, domain
scientists and workflow practitioners lack the appropriate tools
to assess the respective performance of particular design and
deployment options. They must either rely on crude back-
of-the-envelope estimations that lack of realism or actually
execute their workflows, usually at small scale, using different
configurations to determine what could be the best options for
runs at larger scale. This second approach can become time-
and resource- consuming and may still fail to capture certain
phenomena that only appear at a certain scale.

This paper introduces a versatile simulated data transport
layer designed to help researchers with the performance evalu-
ation of in situ workflows design and deployment options. We
implement this simulated DTL as an open-source, standalone
shared library [14], built on top of the SimGrid framework [15]
that can be linked to any SimGrid-based simulator.

https://orcid.org/0000-0003-1902-1955

SimGrid provides accurate and scalable simulation models
and low-level abstractions for simulating distributed com-
puting infrastructures (e.g., commodity clusters, clouds, or
high-performance computing systems) [16], MPI runtime sys-
tems [17], and distributed applications. Since 2001, SimGrid
has been used in more than 650 publications [18]. However, its
low-level simulation abstractions can make the implementation
of simulators of complex systems labor-intensive [19]. With
its higher level abstractions and programming interface, the
proposed simulated DTL can reduce the development effort
needed to evaluate the behavior and performance, at scale, of
different data transport configurations and study the effects of
resource allocation strategies on performance. We demonstrate
its scalability, versatility, and accuracy by reproducing, in
simulation, the execution of synthetic benchmarks used by
actual DTL frameworks and of a real-world in situ workflow
composed of a parallel application and a parallel data analysis
that periodically exchange data through the DTL. Results of
simulations run on a single core show that the proposed library
can simulate the interactions of tens of thousands of simulated
processes deployed on two interconnected commodity clusters
in a few seconds, and the execution by a thousand simulated
processes of an in situ workflow in less than three minutes.

The rest of this paper is organized as follows. Section II
describes frameworks that implement a DTL, identify their
common features, and reviews previous efforts in leveraging
simulation to analyze the performance of in situ workflows.
We detail our simulated DTL in Section III and evaluate its
scalability, versatility, and accuracy in Section IV. Finally,
Section V summarizes our work and outlines future work.

II. RELATED WORK

Several frameworks have been developed to efficiently
transport data within in situ processing workflows. Hereafter,
we review their main characteristics and salient features. We
also review the few works considering the simulation-based
performance evaluation of the execution of in situ workflows.

The ADIOS [9] high-performance I/O framework exposes
a publish/subscribe programming interface to allow scientific
applications to explicitly describe the data they produce and
when it is ready for output, and for analysis components to
express what data they need. A key feature of ADIOS are
its multiple engines that can either write/read directly to/from
the storage system or stream data from the application to the
memory of staging nodes where analysis and visualization
components run, using different techniques.

The DataSpaces framework [10] exposes a virtual shared
space to the components of in situ workflows to support
dynamic and asynchronous data-intensive coupling patterns.
Components can dynamically attach or detach themselves
from this shared space during the execution of the workflow.
DataSpaces relies on geometric descriptors (e.g., coordinates,
or space filling curves) to identify regions of interest that data
consumers can query. For data transport, DataSpaces initially
relied on the DART data transport substrate [20] but has been
since integrated as an ADIOS engine.

LowFive [11] implements a DTL as an HDFS5 Virtual Object
Layer plugin and is distributed as a standalone library. It can
transport data from multiple producers to multiple consumers
either through files or directly over the network via MPI. When
the numbers of producers and consumers or the source and
destination data layouts differ, LowFive can redistribute data
while transporting it. When codes are already using HDFS5 for
their I/Os, they require no further modification to use LowFive
as a data transport layer.

The CAPIO middleware framework [12] can transform
file-based data transport in data-intensive workflows into
streaming-based data transport, without having to modify the
application code. The objective is to reduce the workflow
execution time by avoiding expensive I/O operations on a
shared file system. To this end, the I/O coordination language
of CAPIO allows workflow designers to express additional se-
mantics related to data dependencies through code annotations.
Its runtime system then exploits this semantic information to
generate the data streams accordingly.

Maestro [13] is a memory- and data-aware middleware
for data orchestration within workflows. At its core, Maestro
manages a pool of resources to which workflow components
can contribute by submitting or requesting data objects. These
objects encapsulate data and metadata that provide hints about
how to efficiently transport data. The data management layer
of Maestro relies on libfabric to move, re-layout, redistribute,
or copy data across workflow components.

For in situ visualization, tools such as Paraview Cata-
lyst [21] allow users to build pipelines and instrument their
code to feed these pipelines with data as they are produced.

All these frameworks share common features: (i) a publish/-
subscribe programming interface that allows the components
of in situ workflows to fully delegate data management to
an external framework; (ii) rich metadata providing the data
transport layer with information about the type, shape, and
distribution of a given piece of data; and (iii) different transport
methods ranging from the use of files on a shared storage
space, to direct (deep or shallow) copies in a shared memory
space through memory-to-memory transfers over the network.
We used these features as a foundation for the development
of the proposed versatile simulated data transport layer.

Only a few works have leveraged simulation to analyze
the performance of in situ workflows. Aupy et al. designed a
numerical simulator [22] to evaluate scheduling decisions for
a set of in situ analyses by solving optimization problems on
resource allocation and partitioning. This simulator uses a pre-
determined set of parameters to study the effect of the sched-
uled in situ analyses on the performance of the entire work-
flow. However, its underlying simulation models are simplistic
and ignore network contention. The proposed simulated DTL
benefits from SimGrid’s validated simulation models [23] and
can thus produce more realistic simulation results. Do et al.
created a synthetic Molecular Dynamics (MD) application [24]
by extrapolating benchmark results and used this lightweight
placeholder in their performance evaluation. This tool, which
is not available online, is thus limited to the study of MD

in situ workflows. Our open-source DTL allows to develop
simulators of any type of producer and consumer applications,
at different levels of detail. In a previous work [25] we showed
the utility of simulation-based performance assessments when
designing in situ workflows. However, this proof-of-concept
implementation lacked of some important features now pro-
vided by the simulated DTL, such as the support of dynamic
connection and disconnection of publishers and subscribers,
file-based transport, or complex data redistribution patterns
when streaming data.

III. VERSATILE SIMULATED DATA TRANSPORT LAYER
A. Overview and Terminology

A data transport layer can is the central component in
a publish-subscribe system, that connects applications that
produce data objects to those which consume them, moves
these data objects, and keeps track of metadata. Fig. 1 shows
a generic data transport layer, yet representative of actual
frameworks, and introduces the terminology used in this paper.

Data Transport Layer

Publisher(s) :

File-Based

@ Engine

Fig. 1. Overview and terminology of a generic Data Transport Layer.

Variable
Transaction
Stream

Staging .
Engine = 1 . D %
c L. ‘ ! =<
1= il
o === i v ! a
= 1 &
= 1
o
2 B |
1 [=%
! <
I
I
I
1
|

On the publisher side, one or more applications (e.g.,
large-scale physics simulations) produce data, represented by
multiple variables, and publish them to the DTL within a
transaction using a specific stream. On the subscriber side,
one or more applications (e.g., analysis and visualization com-
ponents) subscribe to specific streams to retrieve the data they
need from the DTL. The DTL itself exposes multiple engines
in charge of the actual data transport from the publisher(s) to
the subscriber(s). These engines either rely on files stored on a
file system or use staging techniques to move data in memory
or over the network.

The proposed simulated DTL builds on the low-level
abstractions exposed by the SimGrid toolkit [15]. Typical
SimGrid-based simulators are composed of multiple actors
(i.e., simulated processes) that launch activities (i.e., computa-
tions, network communications, or I/O operations) defined by
an amount of work to do (e.g., bytes to read, write, or transfer,
compute operations to perform) on resources (i.e., CPUs,
network links, or disks). The simulation models at the core
of SimGrid determine the respective completion date of these
activities to make the simulated time advance. We combined
these low-level abstractions to expose higher-level concepts
and ease the writing of simulators of in situ processing.

B. Variables and Transactions

At the core of the simulated DTL is the data transported
from publishers to subscribers. Many simulation-analysis
workflows involve parallel MPI codes as data producers. These
codes manipulate multidimensional arrays distributed over
multiple ranks. We adopt this data structure, used by popular
DTL frameworks, as the basis of our variable abstraction.
Fig. 2 shows how to define a 3-dimensional array, distributed
to eight MPI ranks in 2 x 2 x 2 grid, as a self-descriptive tuple.

A
A

Ly \
(()Hsvt

4
4
o Lz

Variable: < name, {Gx, Gy, Gz},"%, {Lx, Ly, Lz}, element size >

Fig. 2. Description of a 3-dimensional array distributed over eight MPI ranks
as a tuple composed of the name of the variable, its global dimensions, the
local part owned by each rank, defined by an offset and an element count,
and the size of the elements stored in this variable.

This tuple stores the name of the variable (that is unique to a
given stream), the global dimensions of the multidimensional
array (G, Gy, and G) and, for each rank, the local part
(Lgz, Ly, and L;) owned by that rank after decomposition
and distribution, and a 3D-offset (represented by a star) that
indicates where the local array is positioned in the global array.
Finally, the tuple stores the size of the elements in the array.

Fig. 3 shows how to describe such variables in a simulator,
using the DTL interface. To describe scalar variables, a sim-
plified version of the define_variable () function only
requires the variable name and element size as parameters.

// Definition of a 3D variable to publish to the DTL.
// Each producer owns a chunk of 128x128x256 doubles.
auto v = stream->define_variable ("3D-Var",

{128 * nx, 128 * ny, 256 = nz}, // Global size
{128 * x, 128 x y, 256 * z}, // Local offsets
{128, 128 , 256}, // Local counts

sizeof (double)); // Element size

Fig. 3. Definition of a 3D variable distributed over multiple producers.

The simulated DTL does not actually store or transport
the contents of the multidimensional array represented by a
variable. Internally, only the distribution of the variable and
its local and global sizes matter. The distribution is used to
determine I/O or communication patterns when transporting
the variable while the size is used to compute the simulated
cost of transport. The DTL stores this information as metadata
while it is active. These metadata enable the simulation of
execution scenarios in which actors subscribe to data after
their production in a post-hoc fashion.

Simulated actors can publish, or subscribe to, one or more
variables within a fransaction. This logical construct, inspired
by the notion of step of the ADIOS framework, delimits the
interactions between an actor and the DTL and enables the
synchronization between publishers and subscribers.

When a simulated actor starts a new transaction on a stream,
the DTL makes it wait for the completion of any in-flight data
transport activity from the previous transaction on that stream.

Actors that subscribe to a variable can also, before be-
ginning a new transaction, select a specific subset of the
multidimensional array this variable represents (e.g., to focus
on a smaller region of interest or adapt the decomposition
and distribution of the variable to subsequent data processing).
Fig. 4 shows such a selection, made on the subscriber side.
Four actors subscribe to the 3D variable defined in Fig. 2 and
select blocks of 2D slices, along the Z-dimension.

Fig. 4. Example of selection made on the subscriber side. Four actors
subscribe to a variable published by eight actors with a different distribution.
When the DTL streams this variable, this implies a M x N data redistribution.

This example, which corresponds to the data production
and consumption patterns of the simulation-analysis in situ
workflow considered in Section IV-D, also illustrates that the
simulated DTL can express, and supports the combination of,
such drastically different data access patterns.

During its execution, a simulated actor can perform several
transactions. Indeed, in many in situ processing workflows
(e.g., Particle-in-Cell codes in plasma physics or MD simula-
tions), data is periodically produced, transported, and analyzed
to monitor the progress of an iterative computation (e.g., to
measure densities and currents within a plasma or follow
the trajectories of atoms and molecules), or just saved to
keep regular checkpoints. For any variable, the DTL keeps as
metadata which actor(s) published it, in which transaction(s).
This allows subscriber(s) to select specific transaction(s) when
retrieving data from the DTL.

C. Streams

The Stream abstraction represents a connection between a
simulated actor and the DTL, through which data transport
operations occur, and acts as a variable factory. The publishers
define the variables a stream has to transport. Each publisher
provides global and local information about the variable as
shown in Fig. 3. On the subscribers side, actors first have
to inquire about a variable (i.e., to know its shape and
size) before being able to retrieve it from the DTL. The
inquire_variable (name) method of the Stream class
returns a Variable object. Actors can also obtain a list of
the names of the variables associated to a stream. Finally,
opening a stream creates a specific Engine to actually handle
data transport. We describe the currently available engines and
transport methods in the next section.

D. Engines and Transport Methods

The Engine abstraction is the base interface through which
the DTL interacts with the simulated communication or I/O
subsystems in charge of the simulation of data movement or
storage. We consider the two types of engine supported by
most DTL frameworks: file-based engines, that write and read
data to and from storage and staging engines that stream data
from the memory of publishers to that of subscribers.

Engines are attached to streams. A simulated actor can thus
adapt the type of engine to the purpose of each individual
stream. For instance, one will create a stream with a file-
based engine to store application checkpoints and another
stream with a staging engine to transfer data from one analysis
component to another. The type of engine to use can be
specified either at the creation of a stream or in an external
configuration file passed as argument when creating the DTL.

An engine is then associated to a specific transport method
that further specifies how data is written to and read from
a file system or streamed from one workflow component to
another. This separation between engine and transport method
allows users to switch between multiple implementations of
the same service without having to modify the code of their in
situ workflow simulator: Changing of transport method simply
amounts to modifying a configuration parameter of the stream.

For file-based engines, the default transport method consists
in having each publisher simulate the writing, for each trans-
action, of its own share of a variable in a distinct simulated
file located on a specified simulated storage space. When a
subscriber requests a (selection of a) variable with a different
access pattern, the DTL first computes which files contain the
different pieces of the requested variable and then simulates
the corresponding read operations of these files, wherever they
are virtually stored. The simulation of these I/O operations
is delegated to the file system module of SimGrid [26] that
exposes high-level abstractions for the simulation of file-
system operations on local and remote storage.

To create a file-based engine, users of the DTL must specify
where to store the simulated files. This is done by passing as
argument to the Stream: :open () method a string which
contains the location and name of the targeted file system and
a path to a specific directory. This information can also be
stored in a separate configuration file, which means that users
can test different scenarios (e.g., using a local or remote file
system) without having to modify the code of their simulator.

The location of the file system has a direct impact on
the simulation of I/Os by SimGrid’s file system module. If
the DTL accesses a remote file system, a write (resp. read)
operation implies the simulation of a network communication
before (resp. after) the simulation of the corresponding I/O
operation on a storage device.

The DTL exposes two transport methods for staging en-
gines. The first method simulates both memory copy and
network transfer while ensuring the respect of flow dependen-
cies. Whether a data copy or transfer is simulated depends
on the respective mapping of the publisher and subscriber
on computing resources. If both run on the same node, they

virtually share a memory space, and the DTL simulates a deep
memory copy—as an intra-communication whose performance
can be configured in description of the simulated platform.
Otherwise, it simulates a network communication.

To implement this, we leverage SimGrid’s mailbox ab-
straction which acts as a rendez-vous point between actors.
Only when two actors meet on such a rendez-vous point, the
simulation of a memory copy or data transfer starts.

The second transport method provides users with a “what
if an ideal transport existed?” baseline for their performance
evaluation studies, i.e., all the data exchanges made through
the DTL take zero time. This method leverages another
abstraction exposed by SimGrid to simulate inter-process
communications: Message queues have the same semantic and
purpose as mailboxes, ensuring the respect of control and flow
dependencies, but do not induce any simulated time.

When streaming data, a M x NN data redistribution among
M publishers and N subscribers may be necessary. The exact
redistribution pattern is automatically determined by the DTL
in three steps: (i) when a publisher puts a variable into
a stream, it asynchronously waits for data requests (using
zero-simulated-cost message queues) from any subscriber that
opened that stream; (ii) when a subscriber gets (a subset of)
this variable from the stream, it computes which publishers
own pieces of its local view of the variable and send them each
a request to put the corresponding pieces, defined by offsets
and element counts, in dedicated mailboxes (resp. message
queues); and (iii) when publishers end their transaction, they
asynchronously put the requested pieces in these mailboxes
(resp. message queues). The DTL then simulates the corre-
sponding data exchanges, and may possibly force actors to
wait for their completion when a new transaction starts.

E. Simulated In Situ Workflows

Resorting to simulation for the performance evaluation of
in situ processing workflows allows users to capture complex,
dynamic, and transient performance behaviors (e.g., network
and I/O contention or dependencies between processes) that
may cause unexpected waiting times and to abstract the com-
putational complexity of their various workflow components.

The choice to build a simulated DTL on top of SimGrid is
motivated by the fact that it not only provides a fast simulation
kernel and validated network models [23] but also allows
developers of simulators to combine different programming
models (e.g., data-flow applications represented as directed
acyclic graphs, communicating sequential processes, or MPI
codes) within the same simulator [15], [27].

For instance, SimGrid’s SMPI programming interface [17]
allows for the simulation of full-fledged, unmodified parallel
MPI applications as data producer and/or data consumer. If
these applications are already interfaced with a data manage-
ment framework to handle their I/Os, enabling their simulated
execution with the proposed DTL amounts to replace the
sections of code interacting with these data management
frameworks, which are usually well identified and isolated,
by calls to the simulated DTL.

It is also possible to define actors that mix simulated activ-
ities (e.g., computations) to MPI calls to mimic the execution
flow of an MPI application without having to emulate the exact
computations it performs. The simulation of such mock MPI
applications, as shown in Fig. 5, is much faster but can still
capture complex communication patterns.

I static void simulation_main (int argc, charxx argv) {
2 MPI_Init();
int nranks, rank;
4 MPI_Comm_size (MPI_COMM_WORLD, &nranks);
5 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

double size = std::stod(argv[l]);

8 double 1_size = size / sqrt(nranks);

10 auto dtl = DTL::connect();// Connect to the DTL

12 // Add a ‘‘Data’’ stream using a ‘‘File’’

13 auto s = dtl->add_stream("Data")
->set_engine_type ("File")
—->set_transport_method ("File");

14 // Define a 2D array of chars

engine

15 auto v = s->define_variable ("V", {size, size},
{sizexrank, sizexrank},
{l_size, 1_size},
sizeof (char));

16 // Open the stream in ‘‘Subscribe’’ mode

17 auto e = s->open("cluster:file_system:/working_dir/",
Stream: :Mode: :Publish);

19 // Allocate a shared data buffer for MPI
20 void* data = SMPI_SHARED_MALLOC (size =* size);

22 for (int it = 0; it < 100; it++) {
3 // Compute a GFLOP
24 sg4d::this_actor::execute(1le9);
25 // Perform an all-to-all collective communication
26 MPI_Alltoall (data, size * size, MPI_CHAR, data,
size % size, MPI_CHAR, MPI_COMM_WORLD) ;
27 sgd::this_actor: :execute (500e8); // More computation

29 // publish data to the DTL

30 e->begin_transaction() ;

31 e->put (v, v->get_local_size());
e->end_transaction();

}

35 e->close();

36 DTL: :disconnect () ;

3 SMPI_SHARED_FREE (data) ;
38 MPI_Finalize();

39}

Fig. 5. Example of code for a synthetic MPI application that mixes actual
MPI calls to simulated computations and data publication to the DTL.

Each actor involved in this parallel application first connects
itself to the DTL (line 10), creates a stream (line 13), defines a
variable (line 15), and creates an file-based engine by opening
the stream (line 17). The core of this mock simulation is the
for loop (lines 22 to 33) in which each actor computes a billion
floating point operations, performs an all-to-all collective com-
munication, performs more computation, and finally initiates
a transaction with the DTL to publish its share of the variable.
After a hundred iterations of that loop, each actor closes the
engine (line 35) and disconnects itself from the DTL (line 36).

Fig. 5 also illustrates how SMPI features can be used to
reduce the memory footprint of the simulated execution. Here,
actors allocate (line 20) and free (line 37) a single buffer shared
across all actors instead of allocating a distinct buffer each.

Fig. 6 illustrates the capacity to develop simulated actors at
a higher level of abstraction. It shows the code of a generic
analysis actor that subscribes to the same stream as in Fig. 5
(line 3), inquires about the variable V' (line 6), and opens the
stream in Subscribe mode to obtain a handler on the file-based
engine (line 9). The core of this generic analysis is the loop
in which the actor does a transaction to retrieve the current
contents of variable V' from the DTL (lines 13-15) and then
performs a computation amounting to a thousand floating point
operations per element (line 17). Finally, the actor closes the
engine (line 20) and disconnects itself from the DTL (line 21).

| static void analysis () {
2 auto dtl = DTL::connect ()
auto s = dtl->add_stream("Data");

// Obtain metadata for variable ‘‘V’’
auto V = s->inquire_variable ("V");

T T

8 // Open the stream in ‘‘Subscribe’’ mode
9 auto e = s—->open("cluster:file_system:/working_dir/",
Stream: :Mode: : Subscribe) ;

1 for (int 1 = 0; i < 10 ; i++) {

12 /! Get the latest transaction for variable “‘V’’

13 e->begin_transaction() ;

14 e—->get (V) ;

15 e->end_transaction();

16 // Compute 1e3 floating point operations per element
17 sg4::this_actor::execute (V->get_local_size() * 1le3);
18 }

19

20 e->close () ; /! Close the engine

21 DTL: :disconnect (); // Disconnect from the DTL

Fig. 6. Example of code for a generic simulated analysis actor that iteratively
retrieves data from the DTL and performs some computation.

F. Workflow Simulation and DTL Life Cycle

Fig. 7 shows how to create and run a simulation-analysis
in situ workflow using the DTL to exchange data between the
simulated MPI application described in Fig. 5 and the generic
analysis process in Fig. 6 that runs on a single core.

1 int main(int argc, charxx argv) {
2 sg4::Engine e (&argc, argv);
e.load_platform("./platform_description.so");

5 auto analysis_host = e.get_host_by_name ("node-0") ;
6 auto simulation_hosts =
e.get_hosts_from _MPI_hostfile("./hostfile");

8 // Create the data transport layer
9 DTL::create("./DTL_config file.json");

1 // Start a simulated MPI code instance run by
multiple actors

2 SMPI_app_instance_start ("simulation",
simulation_main, simulation_hosts, argc, argv);

14 /! Create a single in situ analysis actor
15 e.add_actor ("analysis", analysis_host, analysis_main);

17 // Run the simulation
18 e.run();
19 return 0;

20 }

Fig. 7. Example of the main function of a simulator of a simple in situ
workflow in which a parallel MPI application periodically publishes to the
DTL data to be processed by a single subscribing analysis component.

This code first creates the SimGrid engine in charge of the
execution of the simulation (line 2) and loads a shared library
that describes the simulated platform (line 3). Then, it assigns
roles to hosts (i.e., simulated compute nodes) in that platform.
The analysis is executed on node—-0 (line 5) while where the
MPI ranks will run is defined in a regular MPI hostfile (line 6).

The DTL is created by calling DTL: : create () (line 9).
This function can take as an optional argument a JSON
configuration file that describes the different streams to be
created during the simulation each with a name, engine type,
and transport method. An instance of the MPI application in
Fig. 5 (line 12) and the analysis actor in Fig. 6 (line 15) are
then created before running the simulation (line 18).

In situ processing workflows involving more than two
components can be simulated using the same principles as
in Fig. 5 to 7: (i) each component is either an MPI code or
a simulated actor; (ii) each component creates one or more
streams to publish and/or subscribe to data; and (iii) the
streams create the flow dependencies between components and
form the workflow.

A common in situ processing scenario is that some analyses
or visualization are only needed when certain conditions are
met. In such cases, a new process is spawned, subscribes to
some variables, and analyzes or visualizes data. The DTL
has been designed to enable the development of simulators
in which actors can connect to or disconnect from the DTL at
any time. The DTL thus remains active from its creation until
the end of the simulation when it is automatically destroyed.
Internally, the DTL is implemented as a server daemon process
that answers connection and disconnection requests from the
simulated actors and maintains the set of active connections.

IV. EXPERIMENTAL EVALUATION

This section presents the results of different experiments to
assess the scalability, versatility, and accuracy of the proposed
simulated data transport layer. All the simulation runs have
been executed on a single core of an Intel Xeon Platinum 8380
processor at 2.30 GHz running an Ubuntu 24.04. The DTL
v0.1 library [14] is built on top of SimGrid v4.0 [28] and its file
system simulation module FSMod v0.3 [26]. The source code
of the different benchmarks used in this section, as well as all
the scripts to run the experiments and produce the presented
graphs are available online [29].

A. Simulated Platform

For this experimental evaluation, we consider a simulated
platform composed of two homogeneous clusters. The first
cluster, dedicated to the simulation component, comprises
256 96-core nodes while the second cluster dedicated to
analyses has 128 48-core nodes. Each core of these clusters
can respectively process 11 x 10% and 6 x 10° floating point
operations per second. These clusters have the same internal
network topology: Nodes are connected through 1 Gb/s private
network links to a 10 Gb/s crossbar switch. The two clusters
are interconnected through a single 20 Gb/s network link.

TABLE I
PARAMETERS OF THE DATASPACES SCALABILITY EXPERIMENT.

Number of Publishers 64 128 1,024 2,048 4,096 8,192
Publisher distribution 4x4x 4 | 4x4x8 | 8x8x16 | 8x16x16 | 8 x32x16 | 16 x 32 x 16
Number of Subscribers 8 16 128 256 512 1,024
Subscriber distribution | 4 x 1x 2 | 4 x1 x4 8Xx2x8 8x4x8 8Xx8x8 16 x 8 x 8
[Variable globalsize [2GB | 4GB [32GB 64 GB 128 GB 256 GB
Each node of the first cluster has a scratch space of 1 TB on

a SSD disk whose read and write bandwidths are 560 MB/s and
510 MB/s respectively. Both clusters share access to a 100 TB
file system whose read and write bandwidths are 180 MB/s
and 160 MB/s respectively. The first cluster is connected to
this remote file system through a 20 Gb/s network link, while
the second cluster has a slower connection at 10 Gb/s.

B. Scalability Study — Simulation Time

To assess the capacity of the DTL to answer concurrent
insert and retrieve requests at scale, we simulate the execution
of the scalability experiment used to evaluate DataSpaces [10].
This weak-scaling synthetic benchmark involves from 64 to
8,192 publishers that send, through the DTL, a 3-dimensional
array of double precision elements to 8 to 1,024 subscribers.
Each publisher is assigned a 128 x 128 x 256 region of the ar-
ray, injecting 256 MB into the DTL. Each subscriber retrieves
a 128 x 512 x 512 region. Table I summarizes the distribution
of publishers and subscribers along each dimension.

We simulate two in situ execution scenarios with different
proximity [8]: On-node and distinct resources. In the on-node
scenario, 64 publishers and 8 subscribers run on the same
node (with more nodes involved for the larger configurations).
Data transport thus occurs from memory to memory with a
staging engine, or using the local scratch space of each node
with a file-based engine. In the second scenario, publishers
run on the first cluster while subscribers run on the second
cluster. In that configuration, staging transport implies network
communications between the two clusters, while file-based
transport relies on the shared storage space. In both scenarios,
we create a stream per compute node and execute one and ten
transactions with a 1-second delay between two transactions.
Fig. 8 shows the measured average simulation times over ten
executions for the on-node scenario and Fig. 9 for the scenario
with distinct computing resources allocated to the analysis.

We observe similar performance for both scenarios. The
simulated DTL can process concurrent insertion and retrieve
requests submitted by more than ten thousands simulated
actors within a single transaction in less than one second.

We also see that the simulation time increases sub-linearly
with the number of transactions, which further illustrates
the good scalability of the simulated DTL and its capacity
to handle complex data transport scenarios in a reasonable
time. The faster increasing simulation time of staging engines
when actors performs multiple transactions comes from the
additional internal complexity of having subscribers requesting
data pieces to publishers.

Subscribers 128 256 512 1,024

IN

1 Transaction - File

1 Transaction - Staging
10 Transactions - File

10 Transactions - Staging

w
1
1

T T
1,024 2,048

o
|
|
|
]
|
|
}
4
I
s

Average time (in sec.)
n

T T T
Publishers 4,096 8,192

Fig. 8. Average simulation time of the weak scaling benchmark in the on-
node scenario for 1 or 10 transactions with a File or Staging engine. The
bottom scale of the X axis shows the number of actors publishing data while
the top scale shows the number of subscribers retrieving data from the DTL.

Subscribers 128 256 512 1,024

IN

1 Transaction - File

1 Transaction - Staging
10 Transactions - File

10 Transactions - Staging

[N
1
1

1,024

Average time (in sec.)
n

o

Publishers 2048 4096 8192

Fig. 9. Simulation times of the weak scaling benchmark in the distinct
resources scenario, for 1 or 10 transactions with a File or Staging engine.

C. Scalability Study — Simulated Time

To further assess the scalability of the simulated DTL, we
also simulate the execution of a scalability test used to evaluate
LowFive [11], focusing now on the simulated time. This syn-
thetic benchmark is composed of two parallel applications that
respectively produce and consume two variables: A regular
grid of 64-bit unsigned integers and a list of particles, each
particle being represented by three 32-bit floats. Each publisher
produces one million grid points and one million particles, thus
publishing a total of 19 MB to the DTL. The publishers to
subscribers ratio is 3:1. Each subscriber thus retrieves three
million grid points and three million particles, or 57 MB
of data from the DTL. Table II summarizes the different
configurations used in this second weak scaling experiment.

We simulate three in situ execution scenarios: The on-node
and distinct resources scenarios as in the previous section
and an additional off-node scenario in which the subscribers
run on the same compute cluster as the publishers but on
different nodes. The difference between the on-node and off-
node scenarios is that for the latter, the DTL must transport
data over the internal network of the compute cluster when

TABLE 11
PARAMETERS OF THE LOWFIVE SCALABILITY EXPERIMENT.
#Actors | #Pub. #Sub. | #Particles & Data size
#Grid Points | (in GB)
4 3 1 3M 0.06
16 12 4 12M 0.22
64 48 16 48M 0.99
256 192 64 192M 3.54
1,024 768 256 768M 14.34
4,096 3,072 1,024 | 3,072M 55.88
16,384 12,288 | 4,096 1,288M 223.51

using the staging engine and via the shared file system when
using the file-based engine. Moreover, there are not enough
resources on the first cluster to execute the largest case with
16,384 actors in the off-node scenario. As the simulated time
is deterministic, we run each simulation scenarios only once.
Fig. 10 shows the obtained results.

File - On-node File - Off-node —=— File - Distinct Resources
~ 4 - Staging - On-node Staging - Off-node Staging - Distinct Resources

G 1,000
o)
172}
c
< 1004
)
£
S 10
B -
S
> 14
£
%]

0.1 Ao - - - - - A - - - - A - - - - - e - - - - - A - - - - e = = - - - A

4 16 64 256 1,024 4,096 16,384

Total number of simulated actors

Fig. 10. Simulated time to transport grid and particles between one producer
and one consumer applications using either a File-based or Staging engine
and different in situ configurations, in a weak scaling regime.

In the Staging — On-node scenario, the ratio between
publishers and subscribers and the size of the data published
by an actor remain the same as we increase the scale of
the benchmark. The simulated time is thus negligible and
corresponds to the memory copy of 57 MB of data.

Simulations also capture that, in the File — On-node sce-
nario, the transport time does not increase anymore once nodes
are fully used (i.e., running 48 publishers and 16 subscribers).
From that point the amount of data locally written to and read
from the scratch space of a node remains constant.

We observe a similar behavior in the Staging — Off-node
and Staging — Distinct Resources scenarios. However, as the
number of nodes increases, more inter-node communications
are needed to transport data, thus creating network contention
and causing a further increase of the simulated time.

Finally, the File — Off-node and File — Distinct Resources
scenarios lead to similar performance once more than one
node is involved. However, the configuration with 64 actors
corresponds to a sweet spot for the File — Distinct Resources
with enough actors to fully use the nodes and less contention
in the first cluster to access the share storage as the subscribers
retrieve data from the second cluster.

D. Versatility Study — Simulation-Analysis In Situ Workflow

To illustrate the versatility of the DTL and its capacity
to simulate real-world simulation-analysis in situ workflows,
we consider the Gray-Scott application used in the ADIOS
tutorials [9]. This reaction-diffusion model is a 3D 7-point
stencil code that models the U+2V — 3V chemical reaction,
where U and V are two chemical components in a solution.
This reaction consumes U and produces V' and both substances
diffuse over time in the solution.

The actors that execute the Gray-Scott iterative numerical
simulation are organized in a 3D-grid. At each time step,
they compute the current concentrations of the two chemical
components, store them into two uniformly distributed 3D
variables and exchange the boundaries of the data region they
own with their neighbors. The current states of these variables
are published to the DTL every 10 time steps for analysis.

The analysis consists in a parallel application in which each
actor retrieves 2D slices of the variables U and V' along the
Z-dimension from the DTL. For each slice, it computes a prob-
ability density function (PDF) to determine the concentration
of each chemical component in the solution in every point. It
then creates and publishes two new 2D variables to the DTL.
The first dimension has as many elements as the actor has
slices of the 3D variables and the second dimension stores the
density values in each of the bins used to compute the PDF.

The two components of this simulation-analysis in situ
workflow being MPI applications, they can be compiled and
run in a simulated mode with SimGrid without any modifi-
cation. To integrate our simulated DTL, we had to replace
the calls to ADIOS by equivalent calls to the DTL. These
calls are isolated from the core of the Gray-Scott simulation
and PDF calculation analysis, as it is usually the case in
in situ workflows that rely on a data transport layer. More-
over, thanks to the semantic proximity between the DTL and
ADIOS programming interfaces (i.e., same Variable and En-
gine abstractions, Stream vs. 10, Transaction vs. Step), these
modifications are straightforward and amount for 0.5% of the
codes composing the workflow. We believe that integrating
the DTL into existing in situ workflows already using a data
transport layer should require minimal development effort to
enable a simulated execution.

The only modifications made to the non I/O related part of
the Gray-Scott application code were to drastically reduce the
simulation time and the memory footprint of the simulation. To
this end, we leveraged two features offered by the SimGrid’s
SMPI programming interface. We introduced a call to the
SMPI_SAMPLE_LOCAL macro in each of the three nested
loops at the core of the application to go over all the elements
in variables U and V. This macro makes each simulated actor
sample the time taken to emulate the execution of the compute
kernel captured by the macro for a predefined number of
iterations and then replace this kernel by a simulated delay
equal to the average of the sampled times. We opted for the
sampling of logs(local_dim) iterations along each dimension
with no significant effect observed on the simulated time.

TABLE III
PARAMETERS OF THE ADIOS VERSATILITY EXPERIMENT.
#Compute nodes l 1 l 2 4 l 8 l 16 ‘
#Publishers 64 128 256 512 1,024
Pub. distribution | 43 | 8 x 42 | 82 x4 | 8 | 16 x 82
GB/Pub./Trans. 4 2 1 0.5 0.25
| #Subscribers [4] 8 [16 [32] 6 |

Additionally, we used the SMPI__SHARED_MALLOC macro
introduced in Fig. 5 to have all actors allocating a single shared
buffer instead of allocating a distinct buffer each.

We analyze the respective performance of six in situ scenar-
ios in a strong scaling regime. We simulate the execution of
a hundred time steps of the Gray-Scott application and of ten
PDF calculations for a 256 x 256 x 256 domain. Every ten time
steps, the DTL transports 256 GB of data to be analyzed for a
total of about 2.5 TB of data published over the entire lifecycle
of the simulation. Table III describes five configurations with
1 to 16 compute nodes and 64 publishers and four subscribers
per node. Fig. 11 shows the obtained simulated execution
times. For each scenario, the black line denotes the simulated
time achieved when using a staging engine with the transport
method that uses SimGrid’s message queues. This allows us to
distinguish the time taken by the simulation of the Gray-Scott
application and the analysis from the time spent to transport
data between these two workflow components. The analysis
component still relies on a file-based engine to export its
outputs, as there is no consumer of these data in this workflow.

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes
8 290+
c
o il il
8 Staging - On-node File - On-node
2 100 B Staging - Off-node WM File - Off-node 1 |
£ Staging - Distinct File - Distinct
Q e B
£
]
g 504 M [| — I (-
o mEs .-
3
"
0] 04
Fig. 11. Simulated time of the execution of the Gray-Scott simulation-

analysis in situ workflow using either a File-based or Staging engine and
different in situ configurations, in a strong scaling regime. Black lines denote
the simulated time achieved when using a staging engine with the transport
method that uses SimGrid’s message queues.

The best performance is achieved when both components of
the workflow run on a single node. In the On-node scenario,
the overhead of data transport is negligible as the staging
engine directly transports data from memory-to-memory while
the file-based engine leverages the fast local storage. In the
Off-node scenario, the slight cost of additional intra-node
communications between the simulation and the analysis is
reflected in the simulated execution time of the staging engine.
Similarly, the simulation captures the extra cost of using the
remote shared storage instead of the local scratch space by
the file-based engine. Finally, the distinct scenario reflects the
additional cost of moving data between compute clusters.

For all scenarios, the overall execution time increases as
soon as the Gray-Scott application runs on more than one
node, reflecting the effect of the transition from intra-node
to inter-node MPI communications. From two to eight nodes,
the simulated execution times for the on-node scenario and
the off-node scenario with the staging engine do not increase
as the cost of internal MPI communications of the Gray-
Scott application dominates while the overall amount of data
exchanged among actors does not decrease with the number
of actors. When we run the analysis on the second compute
cluster, we observe the increasing effect of network contention.

When we deploy the in situ workflow on 16 nodes, we
observe a global performance degradation as MPI communi-
cations become limited by the crossbar switch backplane for
all scenarios. In the distinct resources scenario the bandwidth
of the network link between the two clusters also becomes a
bottleneck and amplifies this performance degradation.

Finally, we observe longer simulated times when using a
filed-based engine and the shared remote file-system (i.e.,
in the off-node and distinct resources scenarios), due to the
additional cost of I/O, with an increasing performance gap
with the staging engine as we increase the number of nodes.

To conclude this evaluation of the performance of the
DTL when it simulates a real-world simulation-analysis in
situ workflow that involves two MPI parallel applications and
large amounts of data to transport, we analyze the time to
execute such a simulation. Fig. 12 shows that we can simulated
the largest execution scenario with 16 nodes that folds and
emulates the execution of more than a thousand MPI ranks on
a single core, in less than three minutes. This further shows
that simulation-based performance assessments can help to the
design and execution planning of in situ workflows.

%_3" 150 4

17} File
£ —e— Staging
© 100

£

c

S 50

©

=)

£

@ 1 2 4 8 16

Number of nodes

Fig. 12. Time to simulate the Gray-Scott simulation-analysis in situ workflow
when increasing the number of nodes, and thus the number of simulated actors.

E. Accuracy Study — Real vs. Simulated Executions of a
Simulation-Analysis In Situ Workflow

This paper mainly focuses on showing how one can imple-
ment simulators of in situ processing workflows that rely on a
data transport layer with moderate development effort and how
they can capture the discrepancies between different execution
scenarios at scale. However, a typical concern with simulation
is accuracy, i.e., how representative simulated executions are of
real-world executions. Maximizing the accuracy of a simulator
usually requires a careful calibration of the simulation models’
parameter values [30] (e.g., computing speed, network and
disk bandwidth) that we leave out of the scope of this paper.

To show that simulators using the DTL can reproduce the
performance behavior of in situ processing workflows, we
compare real and simulated executions of a small instance
of the Gray-Scott in situ workflow. We execute the Gray-
Scott application on 16 cores of an Intel Xeon Platinum 8380
at 2.30GHz CPU and the PDF calculation on two cores of
the same node. The real execution uses ADIOS (v2.9.1) and
streams data between workflow components. The simulated
execution uses the DTL with a staging engine.

Fig. 13 shows the Gantt charts of the real (top) and
simulated (bottom) executions. In each figure, the black parts
correspond to the time spent in the DTL. In this configuration
the data consumer is waiting for the data producer. We can see
that the simulation does not only matches the actual overall
execution time, but also those on the ten individual steps and
the interactions with the data transport layer. We computed the
relative error between actual and simulated time by averaging
the duration of individual steps across ranks first and then
distinguishing the Gray-Scott simulation, the PDF calculation,
and the time spent in the DTL by the analysis processes (this
time is negligible in on the publishing side). These relative
errors are 2.44%, 8.48%, and 15.96% respectively.

0 10 20 30
Time (in seconds)

154 e ——
e ——
e ——
e ——
e ——
104 e E——
e ——
e ——
e ——
e ——
54 e ——
e ——
e ——
e ——
e ——
04 e ——

1— — —

Ranks

0—| — —

0 10 20 30
Time (in seconds)

Fig. 13. Gantt chart of a real (top) and simulated (bottom) executions of
ten steps the Gray-Scott simulation-analysis in situ workflow using ADIOS.
Sixteen MPI ranks solve the Gray-Scott simulation and two ranks compute
PDFs on 2D-slices. Each color represents a step, while black parts show the
time spent in the DTL.

This experiment, while simple, shows that SimGrid/SMPI
accurately captures the performance behavior or real-world
MPI application while the simulated DTL ensure the respect of
flow dependencies within in situ workflows and can simulate
data exchanges as enabled by frameworks such as ADIOS.

V. CONCLUSION AND FUTURE WORK

The capacity to analyze the data generated by large-scale
applications as it is produced that is offered to domain
scientists by in situ processing frameworks, and data trans-
port layers in particular, presents many advantages in terms
of dynamic control of the application and reduction of the
time to science results. However, these frameworks leave
scientists with the challenging task to determine what is the
most efficient execution scheme of their in situ processing
workflows and do not provide them with the necessary tools to
assess the respective performance of numerous configuration
and resource allocation options. To address these issues, we
introduced in this paper an open-source versatile simulated
data transport layer to enable the development of simulators
of in situ processing workflow executions and the scalable
evaluation of multiple execution scenarios. Our main design
guideline was to combine the low-level abstractions of Sim-
Grid to expose higher level concepts and API, as easy to
program as actual DTL frameworks, hence lowering the entry
barriers to developing simulators of in situ processing. The
simulated DTL also implements and hides to users all the
complexity of handling dynamic actor connections/disconnec-
tions, concurrent accesses to shared structures, complex data
redistribution operations, and the conversion of simple put/get
operations into complex I/O patterns or data redistribution.

We highlighted the main characteristics of this simulated
data transport layer. First, it has the its capacity to capture the
main features of existing data transport frameworks: It adopts
a publish/subscribe paradigm, relies on self-descriptive data,
and exposes multiple data transport techniques. Second, our
experiments demonstrated its scalability: It can simulate the
interactions through the DTL of tens of thousands of simulated
processes deployed on two commodity clusters in only a few
seconds). Third, we showed its versatility: It can simulate
data producer and consumer applications at different levels
of abstraction, ranging from very abstract, easy-to-develop
simulators to the combination of full-fledged MPI applications
in an in situ simulation-analysis workflow. Finally, we showed
its capacity to accurately reflect the performance behavior of
different design and deployment choices.

As future work, we will extend the simulation capabilities
of the DTL by implementing optimization techniques in the
engines: I/O operations can be aggregated at node level to
reduce pressure on the file system; data reduction operators
can be applied before publishing to the DTL; and buffers
can be added to staging engines to mitigate differences in
data production and consumption rates. We also plan to add
support of fault tolerance mechanisms as SimGrid can simulate
(transient) failures of compute nodes, network links, or disks.
Finally, we will further assess the capacity of the simulators
built on the DTL to provide better insights into different
scheduling or resource allocation strategies. To this end, we
will develop simulators for different use cases to obtain more
results and further demonstrate the potential impact of the
simulated DTL on the design of in situ processing workflows.

ACKNOWLEDGMENTS

This research is partially supported by U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Com-
puting Research under Award Number "ERKJ414 — Resilient
Federated Workflows in a Heterogeneous Computing Environ-

ment”

and Laboratory Directed Research and Development

Strategic Hire funding No. 11134 from Oak Ridge National
Laboratory, provided by the Director. Results presented in this
paper were obtained using the Chameleon testbed supported
by the National Science Foundation.

[1]

[4]

[5]

[7]

[8]

[9]

[10]

REFERENCES

A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W.
Bethel, “In Situ Methods, Infrastructures, and Applications on High
Performance Computing Platforms, a State-of-the-art (STAR) Report,”
Computer Graphics Forum, vol. 35, no. 3, pp. 577-597, Jun. 2016.

B. Friesen, A. Almgren, Z. Luki¢, G. Weber, D. Morozov, V. Beckner,
and M. Day, “In Situ and In-transit Analysis of Cosmological Simula-
tions,” Computational Astrophysics and Cosmology, vol. 3, no. 4, 2016.
M. Kim, T. Evans, S. Klasky, and D. Pugmire, “In Situ Visualization
of Radiation Transport Geometry,” in Proceedings of the In Situ Infras-
tructures on Enabling Extreme-Scale Analysis and Visualization, 2017,
p. 7-11.

S. Dutta, N. Klein, L. Tang, J. D. Wolfe, L. V. Roekel, J. J. Benedict,
A. Biswas, E. Lawrence, and N. Urban, “In Situ Climate Modeling
for Analyzing Extreme Weather Events,” in Proceedings of the In Situ
Infrastructures on Enabling Extreme-Scale Analysis and Visualization,
2021, p. 18-23.

T. M. A. Do, L. Pottier, R. Ferreira da Silva, S. Caino-Lores, M. Taufer,
and E. Deelman, “Accelerating Scientific Workflows on HPC Platforms
with In Situ Processing,” in Proceedings of the IEEE/ACM 22nd Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid).
1IEEE, 2022.

E. Dart, J. Zurawski, C. Hawk, B. L. Brown, and I. Monga, “ESnet
Requirements Review Program Through the IRI Lens: A Meta-Analysis
of Workflow Patterns Across DOE Office of Science Programs,” US
Department of Energy (USDOE), Tech. Rep., 11 2023.

R. Ferreira Da Silva, R. Badia, V. Bala, D. Bard, P.-T. Bremer,
I. Buckley, S. Caino-Lores, K. Chard, C. Goble, S. Jha, D. S. Katz,
D. Laney, M. Parashar, F. Suter, N. Tyler, T. Uram, I. Altintas et al.,
“Workflows Community Summit 2022: A Roadmap Revolution,” [On-
line] https://zenodo.org/record/7750670, 2023.

H. Childs, S. Ahern, J. Ahrens, A. Bauer, J. Bennett, E. W. Bethel, P.-T.
Bremer, E. Brugger, J. Cottam, M. Dorier, S. Dutta, J. Favre, T. Fogal,
S. Frey, C. Garth, B. Geveci, W. Godoy, C. Hansen, C. Harrison,
B. Hentschel, J. Insley, C. Johnson, S. Klasky, A. Knoll, J. Kress,
M. Larsen, J. Lofstead, K.-L. Ma, P. Malakar, J. Meredith, K. Moreland,
P. Navritil, P. O’Leary, M. Parashar, V. Pascucci, J. Patchett, T. Pe-
terka, S. Petruzza, N. Podhorszki, D. Pugmire, M. Rasquin, S. Rizzi,
D. Rogers, S. Sane, F. Sauer, R. Sisneros, H.-W. Shen, W. Usher,
R. Vickery, V. Vishwanath, I. Wald, R. Wang, G. Weber, B. Whitlock,
M. Wolf, H. Yu, and S. Ziegeler, “A Terminology for in situ Visualiza-
tion and Analysis Systems,” International Journal of High Performance
Computing and Applications, vol. 34, no. 6, pp. 676-691, 2020.

W. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl, M. Kim,
J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta, G. Ostrouchov,
M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi,
N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky,
“ADIOS 2: The Adaptable Input Output System. A Framework for High-
Performance Data Management,” SoftwareX, vol. 12, p. 100561, 2020.
C. Docan, M. Parashar, and S. Klasky, “DataSpaces: an Interaction and
Coordination Framework for Coupled Simulation Workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163-181, 2012.

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]
[28]
[29]

(30]

T. Peterka, D. Morozov, A. Nigmetov, O. Yildiz, B. Nicolae, and
P. Davis, “LowFive: In Situ Data Transport for High-Performance
Workflows,” in Proc. of the 37th IEEE International Parallel and

Distributed Processing Symposium, 2023, pp. 985-995.
A. Martinelli, M. Torquati, M. Aldlnucm I. Colonnelli, and B. Can-

talupo, “CAPIO: a Middleware for Transparent I/O Streaming in Data-
Intensive Workflows,” in Proc. of the 30th IEEE International Confer-
ence on High Performance Computing, Data, and Analytics, 2023.

C. Haine, U.-U. Haus, M. Martinasso, D. Pleiter, F. Tessier, D. Sarmany,
S. Smart, T. Quintino, and A. Tate, “A Middleware Supporting Data
Movement in Complex and Software-Defined Storage and Memory
Architectures,” in Proc. of the Fourth International Workshop on In-
teroperability of Supercomputing and Cloud Technologies, ser. Lecture
Notes in Computer Science, vol. 12761. Springer, 2021, pp. 346-357.
DTLMod, “Data Transport Layer Module for SimGrid,” [Online] Avail-
able: https://github.com/simgrid/DTLMod/releases/tag/v0.1, 2025.

H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Low-
ering Entry Barriers to Developing Custom Simulators of Distributed
Applications and Platforms with SimGrid,” Parallel Computing, vol.
123, p. 103125, 2025.

“Versatile, Scalable, and Accurate Simulation of Distributed
Applications and Platforms,” Journal of Parallel and Distributed Com-
puting, vol. 74, no. 10, pp. 2899 — 2917, 2014.

A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Stillwell,
and F. Suter, “Simulating MPI applications: the SMPI approach,” IEEE
Trans. on Parallel and Distributed Systems, vol. 18, no. 8, pp. 2387—
2400, 2017.

“SimGrid’s Use in Research Publications,”
html, 2023.

G. Kecskemeti, S. Ostermann, and R. Prodan, “Fostering Energy-
Awareness in Simulations Behind Scientific Workflow Management
Systems,” in Proc. of the 7th IEEE/ACM International Conference on
Utility and Cloud Computing, 2014, pp. 29-38.

C. Docan, M. Parashar, and S. Klasky, “Enabling High-Speed Asyn-
chronous Data Extraction and Transfer using DART,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 9, p. 1181-1204,
2010.

U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin, “ParaView Catalyst: Enabling In Situ Data Analysis and
Visualization,” in Proc. of the First Workshop on In Situ Infrastructures

https://simgrid.org/usages.

for Enabling Extreme-Scale Analysis and Visualization, 2015, p. 25-29.

G. Aupy, B. Goglin, V. Honoré, and B. Raffin, “Modeling High-
Throughput Applications for In Situ Analytics,” International Journal
of High Performance Computing and Applications, vol. 33, no. 6, pp.
1185-1200, 2019.

P. Velho, L. M. Schnorr, H. Casanova, and A. Legrand, “On the Validity
of Flow-Level TCP Network Models for Grid and Cloud Simulations,”
ACM Trans. on Modeling and Computer Simulation, vol. 23, no. 4, 2013.
T. Do, L. Pottier, S. Caino-Lores, R. Ferreira da Silva, M. Cuendet,
H. Weinstein, T. Estrada, M. Taufer, and E. Deelman, “A Lightweight
Method for Evaluating In Situ Workflow Efficiency,” Journal of Com-
putational Science, vol. 48, p. 101259, 2021.

V. Honoré, T. A. Do, L. Pottier, R. Ferreira da Silva, E. Deelman,
and F. Suter, “Sim-Situ: A Framework for the Faithful Simulation of
in situ Processing,” in Proc. of the 18th IEEE International eScience
Conference, Salt Lake City, UT, 2022.

FSMod, “File System Module for SimGrid,” [Online] Available: https:
//github.com/simgrid/file-system-module/releases/tag/v0.3, 2025.
“SimGrid “Frankenstein” example simulator,” [Online] Available: https:
//github.com/simgrid/simgrid_frankenstein, 2024.

SimGrid v4.0, “The ‘This one is 4 you’ Release,” [Online] Available:
https://github.com/simgrid/simgrid/releases/tag/v4.0, 2025.

F. Suter, “Experimental Artifact,” [Online] Available: https://doi.org/10.
6084/m9.figshare.28872509, 2025.

J. McDonald, M. Horzela, F. Suter, and H. Casanova, “Automated
Calibration of Parallel and Distributed Computing Simulators: A Case
Study,” in Proc. of the 25th IEEE Intl. Workshop on Parallel and
Distributed Scientific and Engineering Computing, 2024, pp. 1026-1035.

https://zenodo.org/record/7750670
https://github.com/simgrid/DTLMod/releases/tag/v0.1
https://simgrid.org/usages.html
https://simgrid.org/usages.html
https://github.com/simgrid/file-system-module/releases/tag/v0.3
https://github.com/simgrid/file-system-module/releases/tag/v0.3
https://github.com/simgrid/simgrid_frankenstein
https://github.com/simgrid/simgrid_frankenstein
https://github.com/simgrid/simgrid/releases/tag/v4.0
https://doi.org/10.6084/m9.figshare.28872509
https://doi.org/10.6084/m9.figshare.28872509

	Introduction
	Related Work
	Versatile Simulated Data Transport Layer
	Overview and Terminology
	Variables and Transactions
	Streams
	Engines and Transport Methods
	Simulated In Situ Workflows
	Workflow Simulation and DTL Life Cycle

	Experimental Evaluation
	Simulated Platform
	Scalability Study – Simulation Time
	Scalability Study – Simulated Time
	Versatility Study – Simulation-Analysis In Situ Workflow
	Accuracy Study – Real vs. Simulated Executions of a Simulation-Analysis In Situ Workflow

	Conclusion and Future Work
	References

